Sample Final of Math 121, Fall 2005

Print your name on every page. There are 7 pages with 15 problems. Two detachable blank pages are provided at the back of this test for use as a scratch paper only, and any work left on this scratch paper will NOT be graded.

 $(54 = 18 \times 3 \text{ points})$ Part I. Multiple-choice problems. Circle the correct answer. No partial credit possible.

1. In three hours, the velocity of a car at each half hour was recorded as follows:

Time (hours)	0	.5	1	1.5	2	2.5	3
Velocity (mi/h)	25	45	50	55	40	45	37

What is the numerical estimate of the **average** velocity (in miles/hour) of the car over these three hours, obtained via the Simpson's approximation S_6 ?

(a) 130

(b) 133

(c) 136

(d) 137

(e) none of the above

2. The slope of the tangent line to the curve $x^2 + x \ln y + xy^2 = 5 + \ln 2$ at the point (1,2) is

- (a) $-\frac{3}{2}$ (b) $-\frac{4}{3}$ (c) $-\frac{4}{3} \frac{2}{9}\ln 2$ (d) $-\frac{5}{6} \frac{2}{9}\ln 2$ (e) none of the above

3. If 600 cm^2 of material is available to make an open-top box with a square base, what is the largest possible volume of the box?

- (a) $1000\sqrt{2}$
- (b) $10\sqrt{2}$
- (c) $10\sqrt{6}$
- (d) $100\sqrt{6}$
- (e) none of the above

1

4. Let f and g be functions with continuous derivatives f' and g', respectively, well defined on the real line, such that $\int_{1}^{3} f(x) dx = 4$ and $\int_{1}^{5} f(x) dx = 6$. Furthermore we have the following data.

x	$f\left(x\right)$	$g\left(x ight)$	f'(x)	g'(x)	
1	-3	-1	2	-3	
3	5	1	-1	-2	
5	-5	0	-2	3	

(i) $(g \circ f)'(3) =$ (a) -3(b) 2 (c) -4(d) 4 (e) none of the above (ii) If $h(x) = f(x)^2 g(x^2)$, then h'(1) =(a) -15(b) -48(c) -42(d) 36 (e) none of the above (iii) $\lim_{x\to 5} \frac{f(x) g(x)}{x^2 - 25} =$ (a) 1 (b) -1.5(c) ∞ (d) - 0.6(e) none of the above (iv) If $H(x) = \int_0^{\ln x} f(t)^2 dt$, then $H'(e^3) =$ (a) $\frac{25}{3}$ (b) $8e^3$ (c) 25 (d) $25e^{-3}$ (e) none of the above $\int_{a}^{3} e^{t} f\left(e^{t} + 2\right) dt =$ (v) (a) 4 (b) 0 (c) 2(d) ∞ (e) none of the above $\int_{-\infty}^{\infty} xf'(x) \, dx =$ (vi) (a) 14 (b) 24 (c) 12 (d) 11 (e) none of the above

5. What is the exact volume of the solid obtained by revolving, about the y-axis, the region

$$R = \left\{ (x, y) : 1 \le x \le \pi \text{ and } 0 \le y \le e^{x^2} \right\} ?$$

(a) $\pi e^{2\pi^2}$ (b) $e^{\pi^2} - e$ (c) $e^{\pi^2}\pi - e\pi$ (d) $2\pi e^{\pi^2} + 4\pi^2 e^{\pi^2}$

(e) none of the above

6. What is the exact volume of the solid obtained by revolving, about the line y = -1, the region

 $R = \{(x, y) : 0 \le x \le 1 \text{ and } x \le y \le e^{3x}\}$?

(a) $\pi \left(\frac{1}{6}e^{6} - \frac{1}{3}\right)$ (b) $\pi \left(\frac{2}{3}e^{3} - \frac{5}{3}\right)$ (c) $\pi \left(\frac{4}{9}e^{3} - \frac{4}{9}\right)$ (d) $\pi \left(\frac{1}{6}e^{6} - \frac{1}{2}\right)$ (e) none of the above

7. Consider the parametric curve γ defined by $(x, y) = (\frac{1}{3}t^3 - t + 3, t^2 + 1)$ with $t \ge 0$. (i) The slope of the line tangent to the parametric curve γ at the point $(\frac{1}{3}, 5)$ is

- (a) $\frac{4}{3}$ (b) $\frac{3}{5}$ (c) $\frac{15}{11}$
- (d) 4
- (e) none of the above

(ii) The length of the part of γ that joins the points (3, 1) and (9, 10) is

- (a) $\frac{348}{5}$ (b) 12

- (c) 15
- (d) $2\sqrt{3}$
- (e) none of the above

- (a) 380 000
- (b) 348 500
- (c) 297 500
- (d) 353 000
- (e) none of the above

^{8.} A cable that weighs 10 lb per linear foot is used to lift 900 lb of coal up a mine-shaft. How much work, measured in ft-lb, is done in lifting the coal from 200 feet below the ground to 30 feet below the ground?

Sample Final of Math 121, Fall 2005

9. If
$$\int_{-3}^{2} f(x) dx = -1$$
, $\int_{-1}^{5} f(x) dx = 8$, and $\int_{-3}^{5} f(x) dx = 6$, find $\int_{-1}^{2} f(x) dx$.
(a) 2
(b) -1
(c) 3
(d) -2
(e) none of the above

10. Let $F(x) = \int_0^{\infty} e^{-f(t)} dt$ for a differentiable function f on $(-\infty, \infty)$. Then $F'(x) = \int_0^{\infty} e^{-f(t)} dt$ (a) $2xe^{-f(x)}f'(x)$ (b) $-2xe^{-f(x)}f'(x)$ (c) $2xe^{-f(x^2)}$ (d) $-2xe^{-f(x^2)}$ (e) none of the above

11. A tank of the shape of a circular cone with its vertex pointing downward (and its top horizontal) is completely filled with water. Assume that the radius of its circular top is 1 m and its height (i.e. the distance from the vertex to the top) is 1 m.

(i) What is the work, measured in newton-meter (i.e. joule or $kg \cdot m^2/s^2$), needed to pump all of the water out of this tank over its top? (Note that the density of water is 1000 kg/m^3 and the gravitational acceleration is 9.8 m/s^2 .)

- (a) $\frac{9800\pi}{12}$ (b) $\frac{12}{9800\pi}$
- (c) 9800π
- (d) $\frac{9800}{4}\pi$
- (e) none of the above

(ii) Let h(t) be the water level (i.e. the distance from the vertex to the water surface) in the tank t seconds after we start to pump the water out of this tank at the constant rate of 0.1 m³/s. How fast, in m/s, is the water level dropping at the moment when the water level is 0.4 m? (Give the correct rate of change in its absolute value, ignoring the \pm -sign.)

- (a) $\frac{0.2778}{0.2778}$
- (b) $\frac{0.625}{0.625}$
- $(c) \frac{0.35}{0.35}$
- $(d) \frac{0.001}{0.001}$
- (e) none of the above

Part II. True-false Problems. Circle the correct answer, T (standing for 'True') or F (standing for 'False'). No partial credit possible.

 $(8 = 4 \times 2 \text{ points})$ **12**. Determine whether each of the following statements is true or false.

(1) T F
$$\cdots$$
 $\int_{1}^{9} f(x) dx = \int_{1}^{3} f(x) dx - \int_{9}^{3} f(x) dx$ for any continuous function f on $(-\infty, \infty)$.

4

Sample Final of Math 121, Fall 2005

- (2) T F \cdots $\int_{2}^{1} f(x) dx < 0$ for any **positive** (i.e. f(x) > 0 for all x) continuous function f on $(-\infty, \infty)$.
- (3) T F \cdots $\lim_{h\to 0} \frac{1}{h} \int_a^{a+h} f(t^2) dt = 2af(a^2)$ for any continuous function f on $(-\infty,\infty)$ and any $a \in (-\infty,\infty)$.
- (4) T F \cdots $\frac{1}{6}\int_{3}^{9} f(t) dt \leq |f(3)| + |f(9)|$ for any continuous function f on $(-\infty, \infty)$.

 $(14 = 7 \times 2 \text{ points})$ **13**. The graph of a continuous function f on the closed interval [-6, 7] is shown in the following figure, where the arc is a semicircle. Let $g(x) = \int_{-2}^{x} f(t) dt$ for $-6 \le x \le 7$.

- (1) T F $\cdots g(-6) < 0.$
- (2) T F $\cdots g(1) = g(3) = 6 \pi.$
- (3) T F \cdots g is not differentiable at x = -4, 0, 1, 3, 5.
- (4) T F $\cdots g''(4) = 4.$
- (5) T F $\cdots g$ has a local minimum at $x = \frac{7}{2}$.
- (6) T F \cdots g is concave up on the interval (-4, 0).
- (7) T F \cdots g has an absolute maximum at x = 2 in the interval [-6, 7].

Part III. Standard Essay Problems. **Show your work** to support your answers unless otherwise instructed. Solutions obtained only from calculators will not get any credit.

(10 points) **14**. Compute **EXACTLY ONE** of the following integrals and **CROSS OUT** the other one that is not to be graded.

(i)
$$\int_{-2}^{3} \frac{1}{(x-1)^8} dx.$$

(ii)
$$\int \frac{x^2 - 5x + 3}{x^3 - 9x} dx$$
. (Note that $x^3 - 9x = x(x - 3)(x + 3)$.)

(14 points) 15. The line y = -x + 4 and the parabola $y = x^2 - 2$ intersect at two point (-3, 7) and (2, 2), and bound (or enclose) a unique bounded region R. (i) Find the area A of the region R. (ii) Find the volume V, as a single concrete definite integral without actually computing the value, of the solid that has the region R (in the xy-plane) as its base such that each of its cross-sections perpendicular to the x-axis is a half-disk. (Note that this solid is not a solid of revolution.) (iii) Find the length ℓ of the whole boundary of the region R, as a single concrete definite integral without actually computing the value.

Blank scratch paper

Blank scratch paper