Math 141 Homework \#8
Due Tuesday, 10/2/07
Extra Problems
These problems are taken from the Math 121 sample midterm exam from Fall 2005.

Problem \#1 What value of x is $f(x)=x^{3}+\frac{1}{2} x^{2}-2 x-3$ decreasing most rapidly?

Problem \#2 If c is a constant, then $\lim _{h \rightarrow 0} \frac{e^{c h}-1}{h}$ equals
(a) $\ln c$
(b) c
(c) e^{c}
(d) 0
(e) none of the above

Problem \#3 Evaluate $\lim _{h \rightarrow-4} \frac{h+4}{\sqrt{h+6}-\sqrt{2}}$ or explain why it does not exist.

Problem \#4 Let $f(x)=\frac{x-\sqrt{3}}{x^{2}-3}$. Evaluate the following:
(\#4a) $\lim _{x \rightarrow 1} f(x)$
(\#4b) $\lim _{x \rightarrow 3} f(x)$
(\#4c) $\lim _{x \rightarrow \sqrt{3}} f(x)$
(\#4d) $\lim _{x \rightarrow-2} f(x)$

Problem \#5 Suppose that f and g are functions such that f is continuous, $f(-1)=3$, and $\lim _{x \rightarrow-1} \frac{g(x)}{f(x)^{2}+1}=$ 8. Find $\lim _{x \rightarrow-1} g(x)$.

Problem \#6 Suppose that $f(3)=2, f^{\prime}(3)=-1, g(3)=3$, and $g^{\prime}(3)=5$. Find the following numbers: (i) $(f g)^{\prime}(3)$; (ii) $(g / f)^{\prime}(3)$; (iii) the derivative of $x^{-1} / f(x)$ at $x=3$.

Problem \#7 Let $f(x)=x^{2}+1$. Find every number a such that the line tangent to the graph of $f(x)$ at the point $(a, f(a))$ passes through the point 91,0$)$.

Problem \#8 The position of a particle at time t is given by $s(t)=t^{3}-4 t^{2}+3 t$ for $t \geq 0$.
(\#8a) When is the velocity equal to 6 ?
(\#8b) When is the acceleration equal to 0 ?
(\#8c) When does the particle reverse its direction of motion?

Problem \#9 Let f be the function defined by $f(x)=2 x-1$ for $x \geq 1$ and $f(x)=3 x-2$ for $x<1$. At $a=1$, the function f is
(a) continuous
(b) discontinuous because $\lim _{x \rightarrow 1} f(x)$ does not exist as a real number
(c) discontinuous because $\lim _{x \rightarrow 1} f(x) \neq f(1)$
(d) none of the above

Problem \#10 Find an equation for the tangent line to the parametric curve $(x, y)=\left(3 \sin t, e^{2 t}\right)$ at the point $(0,1)$.

Problem \#11 Find an equation for the tangent line to the curve $3\left(x^{2}+y^{2}\right)^{2}=14 x^{2}-y^{2}$ at the point $(\sqrt{2}, 1)$.

Problem \#12 Calculate $\left.\frac{d}{d x}\left[x^{2}+3\right)^{\sin x}\right]$.

Problem \#13 The derivative of $f(x)=\cos \left(x^{2}\right)$ at $x=0$ is given by the expression
(a) $\lim _{h \rightarrow 0} \frac{\cos \left(h^{2}\right)-\cos h}{h}$
(b) $\lim _{h \rightarrow 0} \frac{\cos \left(h^{2}\right)-1}{h^{2}}$
(c) $\lim _{h \rightarrow 0} \frac{\cos \left(h^{2}\right)-1}{h}$
(d) $\lim _{h \rightarrow 0} \frac{\cos h-1}{h}$
(e) none of the above

Problem \#14 For which value(s) of c is the function $f(x)$ defined below continuous everywhere?

$$
f(x)=\left\{\begin{array}{l}
c^{2} x \text { if } x \leq 1 \\
c+6 x \text { if } x>1
\end{array}\right.
$$

Problem \#15 Suppose that the tangent line to the graph of $f(x)$ at $(-1,2)$ passes through the point $(1,5)$. Find $f(-1)$ and $f^{\prime}(-1)$.

Problem \#16 Suppose that $f(3)=2$ and $f^{\prime}(3)=5$. Find the derivative of $\left(x^{2}+1\right)^{f(x)}$ at $x=3$.

Problem \#17 Calculate the following limits, and for each one, draw a conclusion about an asymptote of some function.
(\#17a) $\lim _{x \rightarrow-\infty} \frac{x^{2}+\sqrt{3} x^{3}+\sqrt{5}}{\sqrt{2}-5 x-\sqrt{2} x^{3}}$
$(\# \mathbf{1 7 b}) \lim _{x \rightarrow \infty}\left(-2 x+\sqrt{4 x^{2}-3 x+1}\right)$
(\#17c) $\lim _{x \rightarrow 3^{-}} \frac{x-1}{(x-3)(x-4)}$

Problem \#18 Let $f(x)=e^{x}, g(x)=x-3$, and $h(x)=5 x$. Find the functions $f g, f \circ g$, and $f \circ g \circ h$.

Problem \#19 Find a formula for the inverse of (i) the function $g(t)=e^{1-t}+3$ with domain $(-\infty, \infty)$ and (ii) the function $f(x)=\ln \left(x^{2}+x-1\right.$ with domain $(1, \infty)$.

