Math 141 Homework #8Due Tuesday, 10/2/07Extra Problems

These problems are taken from the Math 121 sample midterm exam from Fall 2005.

Problem #1 What value of x is $f(x) = x^3 + \frac{1}{2}x^2 - 2x - 3$ decreasing most rapidly?

Problem #2 If c is a constant, then $\lim_{h \to 0} \frac{e^{ch} - 1}{h}$ equals (b) *c*

(c) e^c (d) 0 (e) none of the above (a) $\ln c$

Problem #3 Evaluate $\lim_{h \to -4} \frac{h+4}{\sqrt{h+6} - \sqrt{2}}$ or explain why it does not exist.

Problem #4 Let $f(x) = \frac{x - \sqrt{3}}{x^2 - 3}$. Evaluate the following:

 $\begin{array}{ll} (\#\textbf{4a}) & \lim_{x \to 1} f(x) \\ (\#\textbf{4b}) & \lim_{x \to 3} f(x) \\ (\#\textbf{4c}) & \lim_{x \to \sqrt{3}} f(x) \\ (\#\textbf{4d}) & \lim_{x \to -2} f(x) \end{array}$

Problem #5 Suppose that f and g are functions such that f is continuous, f(-1) = 3, and $\lim_{x \to -1} \frac{g(x)}{f(x)^2 + 1} = 1$ 8. Find $\lim_{x \to -1} g(x)$.

Problem #6 Suppose that f(3) = 2, f'(3) = -1, g(3) = 3, and g'(3) = 5. Find the following numbers: (i) (fg)'(3); (ii) (g/f)'(3); (iii) the derivative of $x^{-1}/f(x)$ at x = 3.

Problem #7 Let $f(x) = x^2 + 1$. Find every number a such that the line tangent to the graph of f(x) at the point (a, f(a)) passes through the point 91, 0).

Problem #8 The position of a particle at time t is given by $s(t) = t^3 - 4t^2 + 3t$ for $t \ge 0$.

- (#8a) When is the velocity equal to 6?
- (#8b) When is the acceleration equal to 0?
- (#8c) When does the particle reverse its direction of motion?

Problem #9 Let f be the function defined by f(x) = 2x - 1 for $x \ge 1$ and f(x) = 3x - 2 for x < 1. At a = 1, the function f is

- (a) continuous
- (b) discontinuous because $\lim_{x \to 1} f(x)$ does not exist as a real number (c) discontinuous because $\lim_{x \to 1} f(x) \neq f(1)$
- (d) none of the above

Problem #10 Find an equation for the tangent line to the parametric curve $(x, y) = (3 \sin t, e^{2t})$ at the point (0, 1).

Problem #11 Find an equation for the tangent line to the curve $3(x^2 + y^2)^2 = 14x^2 - y^2$ at the point $(\sqrt{2}, 1).$

Problem #12 Calculate $\frac{d}{dx} [x^2 + 3)^{\sin x}]$.

Problem #13 The derivative of $f(x) = \cos(x^2)$ at x = 0 is given by the expression

(a) $\lim_{h \to 0} \frac{\cos(h^2) - \cos h}{h}$ (b) $\lim_{h \to 0} \frac{\cos(h^2) - 1}{h^2}$ (c) $\lim_{h \to 0} \frac{\cos(h^2) - 1}{h}$ (d) $\lim_{h \to 0} \frac{\cos h - 1}{h}$ (e) none of the above

Problem #14 For which value(s) of c is the function f(x) defined below continuous everywhere?

$$f(x) = \begin{cases} c^2 x \text{ if } x \le 1\\ c + 6x \text{ if } x > 1 \end{cases}$$

Problem #15 Suppose that the tangent line to the graph of f(x) at (-1,2) passes through the point (1,5). Find f(-1) and f'(-1).

Problem #16 Suppose that f(3) = 2 and f'(3) = 5. Find the derivative of $(x^2 + 1)^{f(x)}$ at x = 3.

 $\label{eq:problem \#17} {\ \ } Calculate the following limits, and for each one, draw a conclusion about an asymptote of some function.$

$$(\#17a) \lim_{x \to -\infty} \frac{x^2 + \sqrt{3}x^3 + \sqrt{5}}{\sqrt{2} - 5x - \sqrt{2}x^3}$$
$$(\#17b) \lim_{x \to \infty} \left(-2x + \sqrt{4x^2 - 3x + 1}\right)$$
$$(\#17c) \lim_{x \to 3^-} \frac{x - 1}{(x - 3)(x - 4)}$$

Problem #18 Let $f(x) = e^x$, g(x) = x - 3, and h(x) = 5x. Find the functions fg, $f \circ g$, and $f \circ g \circ h$.

Problem #19 Find a formula for the inverse of (i) the function $g(t) = e^{1-t} + 3$ with domain $(-\infty, \infty)$ and (ii) the function $f(x) = \ln(x^2 + x - 1)$ with domain $(1, \infty)$.