Math 141 Homework \#5
Due Tuesday, 9/18/07
Extra Problems

Problem \#1 We know that every polynomial function $f(x)$ can be written in the form

$$
f(x)=\sum_{i=0}^{n} a_{i} x^{i}
$$

where $n \geq 0$ is an integer and $a_{n}, a_{n-1}, \ldots, a_{1}, a_{0}$ are real numbers.
Write down a formula for $f^{\prime}(x)$ in terms of the numbers $a_{n}, a_{n-1}, \ldots, a_{1}, a_{0}$ and the variable x. You should express your answer using summation notation, but you don't have to prove it.

Problem \#2 Let $f(x)$ and $g(x)$ be functions, and let a and b be constants. Using the definition of the derivative of a function, write down a clear, well-organized proof of the fact that

$$
\frac{d}{d x}(a \cdot f(x)+b \cdot g(x))=a \cdot f^{\prime}(x)+b \cdot g^{\prime}(x)
$$

You are encouraged to use the proofs of the Constant Multiple, Sum, and Difference Rules (textbook pp. 186187 , or from class on Wednesday $9 / 12$) as templates in constructing your own proof.

Problem \#3 Construct a function $q(x)$ with domain \mathbb{R} that is differentiable but not second-differentiable. That is, $q^{\prime}(x)$ is defined and continuous on \mathbb{R}, but $q^{\prime \prime}(x)$ has a discontinuity (say, at $x=0$).

Bonus part: For all positive integers n, construct a function q such that q is $(n-1)^{t h}$-order differentiable but not $n^{t h}$-order differentiable. That is,

$$
q, \quad \frac{d q}{d x}, \quad \frac{d^{2} q}{d x^{2}}, \quad \ldots, \quad \frac{d^{n-1} q}{d x^{n-1}}
$$

are all defined and continuous, but $\frac{d^{n} q}{d x^{n}}$ has a discontinuity (again, say, at $x=0$).

