Math 141 Homework \#3
Due Tuesday, 9/4/07
Extra Problems
\#1. Suppose that $f(x)=p(x) / q(x)$ is a rational function, where $p(x)$ and $q(x)$ are polynomials.
When does $\lim _{x \rightarrow 0} f(x)=0$ ? When is $\lim _{x \rightarrow 0} f(x)$ a nonzero real number? When does $\lim _{x \rightarrow 0} f(x)$ not exist?
Your answer should be fully explained, and should cover rational functions as possibilities. That is, I should be able to take any rational function at all and use your answer to decide the value of its limit as $x \rightarrow 0$. (So, for example, it is not sufficient to only give an example of each of the three cases.)
\#2. On Tuesday $8 / 28$ in class, we examined a function $s(x)$ that swaps the first two digits of the decimal expansion of $x$. What about the function $r(x)$ that swaps the first and third digits of $x$ (so, e.g., $r(1.23456)=$ $1.43256, r(2.121212)=2.121212)$ ? For which real values of $a$ is $r$ continuous at $a$ ?

Bonus problem: Let $T(x)$ be the function with domain $(0, \infty)$ defined as follows:

- $T(a / b)=1 / b$, if $a / b$ is a fraction in lowest terms;
- $T(x)=0$, if $x$ is an irrational number.

So, e.g., $T(1 / 2)=1 / 2, T(0.375)=1 / 8$ (because $0.375=3 / 8), T(\pi)=0$.
For which values of $a$ is $T(x)$ continuous at $a$ ?

