Examples of Traveling Salesman Problems

- Here are several examples of weighted complete graphs with 5 vertices.
- In each case, we're going to perform the Repetitive Nearest-Neighbor Algorithm and Cheapest-Link Algorithm, then see if the results are optimal.
- Since $N=5,(N-1)!=24$, so it is feasible to find the optimal Hamiton circuit by brute force (using a computer). But if N were much bigger, then brute force would take too long.
- The point is to see how the RNNA and the CLA compare to brute force.

Example 1

C

Results of Example 1

- Output of RNNA: BEDCAB (weight 34)
- Output of CLA: ACBEDA (weight 38)
- In this example, RNNA produces a better result.
- In fact, neither of these Hamilton circuits is optimal - the optimal one is EACBDE (weight 32).

Example 2

Results of Example 2

- RNNA and CLA both output DAECBD (weight 46)
- This happens to be an optimal Hamilton circuit.

Example 3

C

Results of Example 3

- Here, the output of both the CLA and the RNNA may depend on how you break ties. (There's no way to know in advance.)

Example 4

Distance table for Example 4

	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}	\mathbf{F}
\mathbf{A}		12	29	22	13	24
\mathbf{B}	12		19	3	25	6
\mathbf{C}	29	19		21	23	28
\mathbf{D}	22	3	21		4	5
\mathbf{E}	13	25	23	4		16
\mathbf{F}	24	6	28	5	16	

Results of Example 4

- Output of RNNA: FDBAECF (weight 84)
- Output of CLA: ACFBDEA (weight 83)
- In this example, CLA produces a better result.

Results of Example 4

- Output of RNNA: FDBAECF (weight 84)
- Output of CLA: ACFBDEA (weight 83)
- In this example, CLA produces a better result.
- Neither of these Hamilton circuits is optimal - the optimal one is FBCAEDF (weight 76).

Example 5

A

Results of Example 5

Algorithm	Output	Weight
NNA (A)	ABCDA	$12+15+29+17=73$
NNA (B)	BACDB	$12+14+29+18=73$
NNA (C)	CABDC	$=73$ (same as BACDB)
NNA (D)	DABCD	$=73$ (same as ABCDA)
CLA	ABCDA	73 again

Results of Example 5

Algorithm	Output	Weight
NNA (A)	ABCDA	$12+15+29+17=73$
NNA (B)	BACDB	$12+14+29+18=73$
NNA (C)	CABDC	$=73$ (same as BACDB)
NNA (D)	DABCD	$=73$ (same as ABCDA)
CLA	ABCDA	73 again

- The only other Hamilton circuit in K_{4} is ACBDA, which has weight $14+15+18+17=64$.

Results of Example 5

Algorithm	Output	Weight
NNA (A)	ABCDA	$12+15+29+17=73$
NNA (B)	BACDB	$12+14+29+18=73$
NNA (C)	CABDC	$=73$ (same as BACDB)
NNA (D)	DABCD	$=73$ (same as ABCDA)
CLA	ABCDA	73 again

- The only other Hamilton circuit in K_{4} is ACBDA, which has weight $14+15+18+17=64$.
- So both RNNA and CLA give the worst possible answer. (Yuck!)

The Bad News

There is no known algorithm to solve the TSP that is both optimal and efficient.

The Bad News

There is no known algorithm to solve the TSP that is both optimal and efficient.

- Brute-force is optimal but not efficient.
- NNA, RNNA, and CLA are all efficient but not optimal (and can sometimes produce very bad answers).
- The key word is "known." We do not know whether (a) there really is no optimal efficient algorithm, or (b) there really is one and no one has found it yet. Most mathematicians believe (a).

