
Quick Review of TSP Algorithms

I Brute force: Examine all (N − 1)! Hamilton circuits
individually; choose the cheapest one.

— Finds the optimal answer but is very inefficient.

I Nearest-Neighbor Algorithm (NNA): Pick a reference
vertex. At each step, walk to the nearest vertex not
already visited.

I Repetitive Nearest-Neighbor Algorithm (RNNA):
Perform the NNA from every possible reference vertex,
obtaining N different Hamilton circuits. Choose the
cheapest one.



The Cheapest-Link Algorithm

The Cheapest-Link Algorithm (CLA) is a bit different.

Instead of starting at a reference vertex and moving to the
nearest neighbor at each step, we “start in the middle.”

That is, if there is a cheap edge that you know you will want
to use eventually — make sure you use it!

At each stage of the algorithm, pick the cheapest edge
available, regardless of what its endpoints are.

Of course, all the edges you pick have to come together to
form a circuit.



The Cheapest-Link Algorithm

Here’s a more precise description of the Cheapest-Link
Algorithm.

I Find the cheapest edge that you haven’t already added.

I Add it to the list of edges to use.

I Keep doing this until you have a Hamilton circuit.

I Make sure you add exactly two edges at each vertex. (In
other words, don’t put a third edge at a vertex, and don’t
close the circuit too early.)
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Here’s a more precise description of the Cheapest-Link
Algorithm.

I Find the cheapest edge that you haven’t already added.

I Add it to the list of edges to use.

I Keep doing this until you have a Hamilton circuit.
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The Cheapest-Link Algorithm

Here is an example of designing a tour of Australia using the
Cheapest-Link Algorithm.

(Warning: The figure is not quite to scale!)



The Cheapest-Link Algorithm
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Start by finding the shortest edge (Sydney–Canberra).
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Now find the next shortest edge (Perth–Albany).
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And the next shortest (Alice Springs–Uluru). . .
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and the next shortest (Hobart–Melbourne). . .
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and the next shortest (Canberra-Melbourne).



The Cheapest-Link Algorithm

(UL)

(HO)

(KU)

(MK)

(DA)

(AL)

(AS)

(CS)

(BR)

(BM)Broome

Melbourne (ML)

Adelaide (AD)

Uluru

Hobart

Canberra

Sydney

Brisbane

Mackay

Cairns

Mount Isa

Alice Springs

Kununurra

Darwin

Perth

Albany

(SY)
(PE)

(MI)

(CN)

The next shortest edge is actually Adelaide–Melbourne, but we
can’t use it because Melbourne already has two edges.
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So instead we include the next shortest edge (Cairns-Mackay).
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The edges we add get longer and longer.



The Cheapest-Link Algorithm

Hobart

Canberra

Sydney

Brisbane

Mackay

Cairns

Mount Isa

Alice Springs

Kununurra

Darwin

Perth

Albany

(SY)
(PE)

(MI)

(CN)

(HO)

(KU)

(MK)

(DA)

(AL)

(AS)

(CS)

(BR)

(BM)Broome

Melbourne (ML)

Adelaide (AD)

Uluru(UL)



The Cheapest-Link Algorithm

Hobart

Canberra

Sydney

Brisbane

Mackay

Cairns

Mount Isa

Alice Springs

Kununurra

Darwin

Perth

Albany

(SY)
(PE)

(MI)

(CN)

(HO)

(KU)

(MK)

(DA)

(AL)

(AS)

(CS)

(BR)

(BM)Broome

Melbourne (ML)

Adelaide (AD)

Uluru(UL)



The Cheapest-Link Algorithm

Hobart

Canberra

Sydney

Brisbane

Mackay

Cairns

Mount Isa

Alice Springs

Kununurra

Darwin

Perth

Albany

(SY)
(PE)

(MI)

(CN)

(HO)

(KU)

(MK)

(DA)

(AL)

(AS)

(CS)

(BR)

(BM)Broome

Melbourne (ML)

Adelaide (AD)

Uluru(UL)

The last edge is very long indeed. . .
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. . . but finally the circuit is complete.



The Cheapest-Link Algorithm

Here is the same example, but with the links shown in a
spreadsheet rather than pictorially.

(This way we don’t have to worry about the figure not being
to scale!)

At each stage, we look for the smallest number we haven’t yet
used (always being careful not to draw three edges to any
vertex, or to close the circuit prematurely).
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The distance table



The Cheapest-Link Algorithm

Step 1: Add the cheapest link: Sydney–Canberra



The Cheapest-Link Algorithm

Step 2: Add the next cheapest link: Albany–Perth



The Cheapest-Link Algorithm

Step 3: Add the next cheapest link: Alice Spings–Uluru



The Cheapest-Link Algorithm

Step 4: Add the next cheapest link: Hobart–Melbourne



The Cheapest-Link Algorithm

Step 5: Add the cheapest link: Canberra-Melbourne



The Cheapest-Link Algorithm

CN and ML both have two edges, so we are done with them



The Cheapest-Link Algorithm

Keep adding links until the circuit is complete
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Keep adding links until the circuit is complete



The Cheapest-Link Algorithm

Two more links to go!



The Cheapest-Link Algorithm

Next-to-last step: add AD–AL



The Cheapest-Link Algorithm

Last step: close the circuit



The Cheapest-Link Algorithm

Here is the output of the Cheapest-Link Algorithm.

(UL)

(HO)

(KU)

(MK)

(DA)

(AL)

(AS)

(CS)

(BR)

(BM)Broome

Melbourne (ML)

Adelaide (AD)

Uluru

Hobart

Canberra

Sydney

Brisbane

Mackay

Cairns

Mount Isa

Alice Springs

Kununurra

Darwin

Perth

Albany

(SY)
(PE)

(MI)

(CN)



The Cheapest-Link Algorithm

It is not optimal since it involves crossings. . .
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The Cheapest-Link Algorithm

. . . this route is an improvement.
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The Cheapest-Link Algorithm

But it is unclear whether the new route is optimal.
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The Cheapest-Link Algorithm

For example, maybe this route is even better.
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Comparing Algorithms

Randomly chosen Hamilton circuit: 40,680 km
Hamilton circuit using NNA/Sydney: 21,049 km
Hamilton circuit using RNNA: 18,459 km
Hamilton circuit using CLA: 18,543 km

So CLA did not find an optimal circuit. But it is a reasonable
method that might perform better in a different example.

Might there be an even better Hamilton circuit? Can
we find it without having to use brute force?



The Bad News

There is no known algorithm to solve the
TSP that is both optimal and efficient.

I Brute-force is optimal but not efficient.

I NNA, RNNA, and CLA are efficient but not optimal.

I Maybe no optimal, efficient algorithm exists. . . or maybe
it’s out there but no one has found it yet. We don’t know!




