The Mathematics of Touring (Chapter 6)

- In Chapter 5, we studied Euler paths and Euler circuits: paths and circuits that use every edge of a graph.
- In Chapter 6, we'll look at circuits that use every vertex of a graph exactly once. These are called Hamilton circuits.
- Instead of asking, "Does a graph have a Hamilton circuit?", the interesting question is often, "Out of all the possible Hamilton circuits, which one is the most efficient?"

The Traveling Salesman Problem (TSP)

Willy, a traveling salesman, has to visit each of several cities (say, the 48 state capitals of the continental United States)

He would like his trip to cover as little distance as possible.

In what order should Willy visit the 48 cities?

This problem is the Traveling Salesman Problem, or TSP.

Note that there are many possible routes - to be exact, there are 47 ! $\approx 2.6 \times 10^{59}$ of them. The problem is to find the shortest of these routes.

The Traveling Salesman Problem (TSP)

The TSP comes up in many other contexts. For example:

The Traveling Salesman Problem (TSP)

The TSP comes up in many other contexts. For example:

- A spacecraft needs to visit each of six sites on Mars to collect samples (fuel is very expensive on Mars, so shortening the route will save money)

The Traveling Salesman Problem (TSP)

The TSP comes up in many other contexts. For example:

- A spacecraft needs to visit each of six sites on Mars to collect samples (fuel is very expensive on Mars, so shortening the route will save money)
- A school bus needs to visit each of several pickup/dropoff locations (here the issue is not money, but time)

The Traveling Salesman Problem (TSP)

The TSP comes up in many other contexts. For example:

- A spacecraft needs to visit each of six sites on Mars to collect samples (fuel is very expensive on Mars, so shortening the route will save money)
- A school bus needs to visit each of several pickup/dropoff locations (here the issue is not money, but time)
- You are taking your four-year-old trick-or-treating and needs to visit each of eight friends and relatives

The TSP As A Graph Problem

Suppose we have a graph in which every edge has a weight (representing its cost, time, or distance).

The TSP is then to find a path or a circuit that

- visits every vertex; and
- has total weight as low as possible.

Hamilton Paths and Hamilton Circuits

A Hamilton path is a path that uses every vertex of a graph exactly once.

A Hamilton circuit is a circuit that uses every vertex of a graph exactly once.

Hamilton Paths and Hamilton Circuits

A Hamilton path is a path that uses every vertex of a graph exactly once.

A Hamilton circuit is a circuit that uses every vertex of a graph exactly once.

- By contrast, an Euler path/circuit is a path/circuit that uses every edge exactly once. (Mnemonic: $\underline{\text { Euler }}=\underline{\text { Edge }}$)
- "Path": starting and ending vertices are different.
- "circuit" starting and ending vertices are the same.

Hamilton Paths and Hamilton Circuits

Start at A
("reference vertex")

Hamilton Paths and Hamilton Circuits

Path so far: AB

Hamilton Paths and Hamilton Circuits

Path so far: ABC

Hamilton Paths and Hamilton Circuits

Path so far: ABCF

Hamilton Paths and Hamilton Circuits

Path so far: ABCFJ

Hamilton Paths and Hamilton Circuits

Path so far: ABCFJE

Hamilton Paths and Hamilton Circuits

Path so far: ABCFJEH

Hamilton Paths and Hamilton Circuits

Path so far: ABCFJEHG

Hamilton Paths and Hamilton Circuits

Path so far: ABCFJEHGD

Hamilton Paths and Hamilton Circuits

Path so far: ABCFJEHGDA

Hamilton Paths and Hamilton Circuits

Complete circuit: ABCFJEHGDA

Hamilton Paths and Hamilton Circuits

Changing the starting vertex (or "reference vertex") does not change the Hamilton circuit, because the same edges are traversed in the same directions.

Hamilton Paths and Hamilton Circuits

Reference vertex A Hamilton circuit: ABCFJEHGDA

Hamilton Paths and Hamilton Circuits

Reference vertex A Hamilton circuit: ABCFJEHGDA

Reference vertex E Hamilton circuit: EHGDABCFJE

Hamilton Paths and Hamilton Circuits

We can also make a Hamilton circuit into its "mirror image" by reversing direction. The mirror image uses the same edges, but backwards, so it is not considered the same as the original Hamilton circuit.

Hamilton Paths and Hamilton Circuits

Reference vertex A Hamilton circuit: ABCFJEHGDA

Hamilton Paths and Hamilton Circuits

Reference vertex A Hamilton circuit: ABCFJEHGDA

Reverse direction Hamilton circuit: ADGHEJFCBA

Hamilton vs. Euler

Can a graph have both a Hamilton circuit and an Euler circuit?

Hamilton vs. Euler

Can a graph have both a Hamilton circuit and an Euler circuit?

Hamilton vs. Euler

Can a graph have both a Hamilton circuit and an Euler circuit?

Hamilton vs. Euler

Can a graph have both a Hamilton circuit and an Euler circuit?

Hamilton vs. Euler

Can a graph have a Hamilton circuit, but not an Euler circuit?

Hamilton vs. Euler

Can a graph have a Hamilton circuit, but not an Euler circuit?

Hamilton vs. Euler

Can a graph have an Euler circuit, but not a Hamilton circuit?

Hamilton vs. Euler

Can a graph have an Euler circuit, but not a Hamilton circuit?

Hamilton vs. Euler

Can a graph have neither a Hamilton circuit nor an Euler circuit? (Let's just consider connected graphs.)

Hamilton vs. Euler

Can a graph have neither a Hamilton circuit nor an Euler circuit? (Let's just consider connected graphs.)

This graph has no circuits at all!

Hamilton vs. Euler

Conclusion: Whether a graph does or does not have a Hamilton circuit tells you nothing about whether it has an Euler circuit, and vice versa.

The same is true for Hamilton/Euler paths (rather than circuits).

Which Graphs Have Hamilton Circuits?

We know how to determine whether a graph has an Euler path or circuit: count the odd vertices.

On the other hand, there is no simple way to tell whether or not a given graph has a Hamilton path or circuit.

Finding the Shortest Hamilton Circuit

Rather than asking whether a particular graph has a Hamilton circuit, we will be looking at graphs with lots of Hamilton circuits, and trying to find the shortest one.

For example, Willy the traveling salesman has the option to drive from any state capital to any other, so the relevant graph has lots of edges - it is a complete graph.

