What if we have *N* vertices that we want to connect **as cheaply as possible?**

Total weight of this spanning tree: 17284 km

Suppose that we have a **weighted complete graph** with N vertices.

Suppose that we have a **weighted complete graph** with N vertices.

How can we find a spanning tree with the smallest possible weight?

Suppose that we have a **weighted complete graph** with N vertices.

How can we find a spanning tree with the smallest possible weight?

An exhaustive search of all trees is not a good idea — there are N^{N-2} spanning trees to consider (and this is a very big number!)

Idea (sort of like the Cheapest-Link Algorithm for finding a Hamilton circuit):

 Add edges one at a time, choosing the cheapest edge possible.

(Break ties arbitrarily.)

- Be sure never to create a circuit.
- Stop when you have a spanning tree.

This is called **Kruskal's algorithm**.

And now, a miracle occurs...

And now, a miracle occurs...

Kruskal's algorithm always works!

For example, let's look at the weighted K_4 that caused trouble for the Nearest-Neighbor and Cheapest-Link Algorithms.

Tree	Weight	Tree	Weight
AB,AC,AD	12 + 14 + 17 = 43	AC,AD,BC	14 + 17 + 15 = 46
AB,AC,BD	12 + 14 + 18 = 44	AC,AD,BD	14 + 17 + 18 = 49
AB,AC,CD	12 + 14 + 29 = 55	AC,BC,BD	14 + 15 + 18 = 47
AB,AD,BC	12 + 17 + 15 = 44	AC,BC,CD	14 + 15 + 29 = 58
AB,AD,CD	12 + 17 + 29 = 58	AC,BD,CD	14 + 18 + 29 = 61
AB,BC,BD	12 + 15 + 18 = 45	AD,BC,BD	17 + 15 + 18 = 50
AB,BC,CD	12 + 15 + 29 = 56	AD,BC,CD	17 + 15 + 29 = 61
AB,BD,CD	12 + 18 + 29 = 59	AD,BD,CD	17 + 18 + 29 = 64