
The Mathematics of Networks (Chapter 7)

We have studied how to visit all the edges of a graph (via an
Euler path or circuit) and how to visit all the vertices (via a
Hamilton circuit).

What if we just want to connect all the vertices
together into a network?

In other words, What if we just want to connect all the
vertices together in a network?

I Roads, railroads

I Telephone lines

I Fiber-optic cable
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Networks and Spanning Trees

Definition: A network is a connected graph.

Definition: A spanning tree of a network is a subgraph
that

1. connects all the vertices together; and

2. contains no circuits.

In graph theory terms, a spanning tree is a subgraph that is
both connected and acyclic.
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Not a spanning tree

 (not connected)
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Not a spanning tree

 (connected, but has a circuit)
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The Number of Edges in a Spanning Tree

In a network with N vertices, how many edges does a
spanning tree have?



The Number of Edges in a Spanning Tree

I Imagine starting with N isolated vertices and adding
edges one at a time.

I Each time you add an edge, you either
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I

I Stop when the graph is connected (i.e., has only one
component).

I You have added exactly N − 1 edges.

In a network with N vertices, every spanning tree has
exactly N − 1 edges.
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The Number of Edges in a Spanning Tree

Answer: No.

For example, suppose the network is K4.

Spanning tree Spanning tree Not a spanning tree
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Spanning Trees in K4
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Facts about Spanning Trees

Suppose we have a network with N vertices.

1. Every spanning tree has exactly N − 1 edges.

2. If a set of N − 1 edges is acyclic, then it connects all the
vertices, so it is a spanning tree.

3. If a set of N − 1 edges connects all the vertices, then it is
acyclic, so it is a spanning tree.
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Facts about Spanning Trees

4. In a network with N vertices and M edges,

M ≥ N − 1

(otherwise it couldn’t possibly be connected!) That is,

M − N + 1 ≥ 0.

The number M − N + 1 is called the redundancy of the
network, denoted by R .

5. If R = 0, then the network is itself a tree.
If R > 0, then there are usually several spanning trees.
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Counting Spanning Trees

We now know that every spanning tree of an N-vertex network
has exactly N − 1 edges.

How many different spanning trees are there?

Of course, this answer depends on the network itself.
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Loops and Bridges

I If an edge of a network is a loop, then it is not in any
spanning tree.

I If an edge of a network is a bridge, then it must belong
to every spanning tree.
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Counting Spanning Trees

x
of this triangleof this triangle

3 spanning trees 3 spanning trees

= 9 total spanning trees



Counting Spanning Trees

How many spanning
trees does this
network have?
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Counting Spanning Trees

bridges How many spanning
trees does this
network have?

4

4

3

3



Counting Spanning Trees

bridges How many spanning
trees does this
network have?

4

4

3

3
4 x 3 x 3 x 4 =
Answer:

144.



Counting Spanning Trees

If the graph has circuits that overlap, it is trickier to count
spanning trees. For example:

1 2

3 4

I There are N = 4 vertices =⇒
every spanning tree has N − 1 = 3 edges.

I List all the sets of three edges and cross out the ones that
are not spanning trees.
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2 are not trees
Total: 8 spanning trees

10 ways to select three edges



The Number of Spanning Trees of KN

(Not in Tannenbaum!)

Since KN has N vertices, we know that every spanning tree of
KN has N − 1 edges.

How many different spanning trees are there?

We have already seen the answers for K2, K3, and K4.
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Cayley’s Formula:
The number of spanning trees in KN is NN−2.

For example, K16 (the Australia graph!) has

1614 = 72, 057, 594, 037, 927, 936

spanning trees.

(By comparison, the number of Hamilton circuits is “only”

15! = 1, 307, 674, 368, 000.)


