We have studied how to visit all the edges of a graph (via an Euler path or circuit) and how to visit all the vertices (via a Hamilton circuit).

We have studied how to visit all the edges of a graph (via an Euler path or circuit) and how to visit all the vertices (via a Hamilton circuit).

What if we just want to connect all the vertices together into a network?

We have studied how to visit all the edges of a graph (via an Euler path or circuit) and how to visit all the vertices (via a Hamilton circuit).

What if we just want to connect all the vertices together into a network?

In other words, What if we just want to connect all the vertices together in a network?

We have studied how to visit all the edges of a graph (via an Euler path or circuit) and how to visit all the vertices (via a Hamilton circuit).

What if we just want to connect all the vertices together into a network?

In other words, What if we just want to connect all the vertices together in a network?

- Roads, railroads
- Telephone lines
- Fiber-optic cable

Networks and Spanning Trees

Definition: A **network** is a connected graph.

Definition: A **spanning tree** of a network is a subgraph that

- 1. connects all the vertices together; and
- 2. contains no circuits.

In graph theory terms, a spanning tree is a subgraph that is both **connected** and **acyclic**.

A spanning tree

In a network with N vertices, how many edges does a spanning tree have?

▶ Imagine starting with *N* isolated vertices and adding edges one at a time.

- ▶ Imagine starting with *N* isolated vertices and adding edges one at a time.
- Each time you add an edge, you either
 - connect two components together, or
 - close a circuit

- ▶ Imagine starting with *N* isolated vertices and adding edges one at a time.
- Each time you add an edge, you either
 - connect two components together, or
 - close a circuit

- ► Imagine starting with N isolated vertices and adding edges one at a time.
- Each time you add an edge, you either
 - connect two components together, or
 - close a circuit
- Stop when the graph is connected (i.e., has only one component).

- Imagine starting with N isolated vertices and adding edges one at a time.
- Each time you add an edge, you either
 - connect two components together, or
 - close a circuit
- Stop when the graph is connected (i.e., has only one component).
- ▶ You have added exactly N-1 edges.

- ▶ Imagine starting with *N* isolated vertices and adding edges one at a time.
- Each time you add an edge, you either
 - connect two components together, or
 - close a circuit
- Stop when the graph is connected (i.e., has only one component).
- ▶ You have added exactly N-1 edges.

In a network with N vertices, every spanning tree has exactly N-1 edges.

In a network with ${\cal N}$ vertices, every spanning tree has exactly ${\cal N}-1$ edges.

In a network with ${\cal N}$ vertices, every spanning tree has exactly ${\cal N}-1$ edges.

Must every set of N-1 edges form a spanning tree?

Answer: No.

For example, suppose the network is K_4 .

Spanning tree

Spanning tree

Not a spanning tree

Spanning Trees in K_2 and K_3

Spanning Trees in K_4

Suppose we have a network with N vertices.

1. Every spanning tree has exactly N-1 edges.

Suppose we have a network with N vertices.

- 1. Every spanning tree has exactly N-1 edges.
- 2. If a set of N-1 edges is acyclic, then it connects all the vertices, so it is a spanning tree.

Suppose we have a network with N vertices.

- 1. Every spanning tree has exactly N-1 edges.
- 2. If a set of N-1 edges is acyclic, then it connects all the vertices, so it is a spanning tree.
- 3. If a set of N-1 edges connects all the vertices, then it is acyclic, so it is a spanning tree.

4. In a network with N vertices and M edges,

$$M \ge N - 1$$

(otherwise it couldn't possibly be connected!) That is,

$$M-N+1\geq 0$$
.

The number M-N+1 is called the **redundancy** of the network, denoted by R.

4. In a network with N vertices and M edges,

$$M > N - 1$$

(otherwise it couldn't possibly be connected!) That is,

$$M-N+1\geq 0$$
.

The number M-N+1 is called the **redundancy** of the network, denoted by R.

5. If R = 0, then the network is itself a tree. If R > 0, then there are usually several spanning trees.

Counting Spanning Trees

We now know that every spanning tree of an N-vertex network has exactly N-1 edges.

Counting Spanning Trees

We now know that every spanning tree of an N-vertex network has exactly N-1 edges.

How many different spanning trees are there?

We now know that every spanning tree of an N-vertex network has exactly N-1 edges.

How many different spanning trees are there?

Of course, this answer depends on the network itself.

► If an edge of a network is a **loop**, then it is **not in any** spanning tree.

- ► If an edge of a network is a **loop**, then it is **not in any** spanning tree.
- If an edge of a network is a bridge, then it must belong to every spanning tree.

We now know that every spanning tree of an N-vertex network has exactly N-1 edges.

We now know that every spanning tree of an N-vertex network has exactly N-1 edges.

How many different spanning trees are there?

We now know that every spanning tree of an N-vertex network has exactly N-1 edges.

How many different spanning trees are there?

Of course, this answer depends on the network itself.

= 9 total spanning trees

Answer:
$$4 \times 3 \times 3 \times 4 = 144$$
.

If the graph has circuits that overlap, it is trickier to count spanning trees. For example:

If the graph has circuits that overlap, it is trickier to count spanning trees. For example:

► There are N = 4 vertices \implies every spanning tree has N - 1 = 3 edges.

If the graph has circuits that overlap, it is trickier to count spanning trees. For example:

- ► There are N = 4 vertices \implies every spanning tree has N 1 = 3 edges.
- ▶ List all the sets of three edges and cross out the ones that are not spanning trees.

The Number of Spanning Trees of K_N (Not in Tannenbaum!)

Since K_N has N vertices, we know that every spanning tree of K_N has N-1 edges.

How many different spanning trees are there?

The Number of Spanning Trees of K_N (Not in Tannenbaum!)

Since K_N has N vertices, we know that every spanning tree of K_N has N-1 edges.

How many different spanning trees are there?

We have already seen the answers for K_2 , K_3 , and K_4 .

Number of vertices (N)	Number of spanning trees in K_N
2	1
3	3
4	16
•	10

Number of spanning trees in K_N
1
1
3
16

Number of spanning trees in K_N
1
1
3
16
125

Number of spanning trees in K_N
1
1
3
16
125
1296

Number of vertices (N)	Number of spanning trees in K_N
1	1
2	1
3	3
4	16
5	125
6	1296
7	16807
8	262144

Number of vertices (N)	Number of spanning trees in K_N
1	1
2	1
3	3
4	16
5	125
6	1296
7	16807
8	262144

What's the pattern?

Number of vertices (N)	Number of spanning trees in K_N
1	1
2	1
3	3
4	16
5	125
6	1296
7	16807
8	262144

Number of spanning trees in K_N
1
1
3
$16 = 4^2$
125
1296
16807
262144

Number of vertices (N)	Number of spanning trees in K_N
1	1
2	1
3	3
4	$16 = 4^2$
5	$125 = 5^3$
6	1296
7	16807
8	262144

Number of vertices (N)	Number of spanning trees in K_N
1	1
2	1
3	$3 = 3^1$
4	$16 = 4^2$
5	$125 = 5^3$
6	1296
7	16807
8	262144

Number of vertices (N)	Number of spanning trees in K_N
1	1
2	1
3	$3 = 3^1$
4	$16 = 4^2$
5	$125 = 5^3$
6	$1296 = 6^4$
7	16807
8	262144

Number of vertices (N)	Number of spanning trees in K_N
1	1
2	1
3	$3 = 3^1$
4	$16 = 4^2$
5	$125 = 5^3$
6	$1296 = 6^4$
7	$16807 = 7^5$
8	262144

Number of vertices (N)	Number of spanning trees in K_N
1	1
2	1
3	$3 = 3^1$
4	$16 = 4^2$
5	$125 = 5^3$
6	$1296 = 6^4$
7	$16807 = 7^5$
8	$262144 = 8^6$

Number of vertices (N)	Number of spanning trees in K_N
1	1
2	$1 = 2^0$
3	$3 = 3^1$
4	$16 = 4^2$
5	$125 = 5^3$
6	$1296 = 6^4$
7	$16807 = 7^5$
8	$262144 = 8^6$

Number of vertices (N)	Number of spanning trees in K_N
1	$1 = 1^{-1}$
2	$1 = 2^0$
3	$3 = 3^1$
4	$16 = 4^2$
5	$125 = 5^3$
6	$1296 = 6^4$
7	$16807 = 7^5$
8	$262144 = 8^6$

Number of vertices (N)	Number of spanning trees in K_N
1	$1 = 1^{-1}$
2	$1 = 2^0$
3	$3 = 3^1$
4	$16 = 4^2$
5	$125 = 5^3$
6	$1296 = 6^4$
7	$16807 = 7^5$
8	$262144 = 8^6$

Cayley's Formula:

The number of spanning trees in K_N is N^{N-2} .

Cayley's Formula:

The number of spanning trees in K_N is N^{N-2} .

For example, K_{16} (the Australia graph!) has

$$16^{14} = 72,057,594,037,927,936$$

spanning trees.

(By comparison, the number of Hamilton circuits is "only"

$$15! = 1,307,674,368,000.$$