The Mathematics of Networks (Chapter 7)

We have studied how to visit all the edges of a graph (via an Euler path or circuit) and how to visit all the vertices (via a Hamilton circuit).

The Mathematics of Networks (Chapter 7)

We have studied how to visit all the edges of a graph (via an Euler path or circuit) and how to visit all the vertices (via a Hamilton circuit).

What if we just want to connect all the vertices together into a network?

The Mathematics of Networks (Chapter 7)

We have studied how to visit all the edges of a graph (via an Euler path or circuit) and how to visit all the vertices (via a Hamilton circuit).

What if we just want to connect all the vertices together into a network?

In other words, What if we just want to connect all the vertices together in a network?

The Mathematics of Networks (Chapter 7)

We have studied how to visit all the edges of a graph (via an Euler path or circuit) and how to visit all the vertices (via a Hamilton circuit).

What if we just want to connect all the vertices together into a network?

In other words, What if we just want to connect all the vertices together in a network?

- Roads, railroads
- Telephone lines
- Fiber-optic cable

Too many edges!

Still too many edges

Just right

Another possibility

Not enough edges

Networks and Spanning Trees

Definition: A network is a connected graph.

Definition: A spanning tree of a network is a subgraph that

1. connects all the vertices together; and
2. contains no circuits.

In graph theory terms, a spanning tree is a subgraph that is both connected and acyclic.

A spanning tree

A spanning tree

The Number of Edges in a Spanning Tree

In a network with \mathbf{N} vertices, how many edges does a spanning tree have?

The Number of Edges in a Spanning Tree

- Imagine starting with N isolated vertices and adding edges one at a time.

The Number of Edges in a Spanning Tree

- Imagine starting with N isolated vertices and adding edges one at a time.
- Each time you add an edge, you either
- connect two components together, or
- close a circuit

The Number of Edges in a Spanning Tree

- Imagine starting with N isolated vertices and adding edges one at a time.
- Each time you add an edge, you either
- connect two components together, or
- elose a circuit

The Number of Edges in a Spanning Tree

- Imagine starting with N isolated vertices and adding edges one at a time.
- Each time you add an edge, you either
- connect two components together, or
- elose a circuit
- Stop when the graph is connected (i.e., has only one component).

The Number of Edges in a Spanning Tree

- Imagine starting with N isolated vertices and adding edges one at a time.
- Each time you add an edge, you either
- connect two components together, or
- elose a circuit
- Stop when the graph is connected (i.e., has only one component).
- You have added exactly $N-1$ edges.

The Number of Edges in a Spanning Tree

- Imagine starting with N isolated vertices and adding edges one at a time.
- Each time you add an edge, you either
- connect two components together, or
- close a circuit
- Stop when the graph is connected (i.e., has only one component).
- You have added exactly $N-1$ edges.

In a network with \mathbf{N} vertices, every spanning tree has exactly N - 1 edges.

The Number of Edges in a Spanning Tree

In a network with N vertices, every spanning tree has exactly $N-1$ edges.

The Number of Edges in a Spanning Tree

In a network with N vertices, every spanning tree has exactly $N-1$ edges.

Must every set of $\mathrm{N}-1$ edges form a spanning tree?

The Number of Edges in a Spanning Tree

Answer: No.
For example, suppose the network is K_{4}.

Spanning tree

Not a spanning tree

Spanning Trees in K_{2} and K_{3}

K_{2}
K_{3}
$1 \bullet 2$

Spanning Trees in K_{4}

Facts about Spanning Trees

Suppose we have a network with N vertices.

1. Every spanning tree has exactly $N-1$ edges.

Facts about Spanning Trees

Suppose we have a network with N vertices.

1. Every spanning tree has exactly $N-1$ edges.
2. If a set of $N-1$ edges is acyclic, then it connects all the vertices, so it is a spanning tree.

Facts about Spanning Trees

Suppose we have a network with N vertices.

1. Every spanning tree has exactly $N-1$ edges.
2. If a set of $N-1$ edges is acyclic, then it connects all the vertices, so it is a spanning tree.
3. If a set of $N-1$ edges connects all the vertices, then it is acyclic, so it is a spanning tree.

Facts about Spanning Trees

4. In a network with N vertices and M edges,

$$
M \geq N-1
$$

(otherwise it couldn't possibly be connected!) That is,

$$
M-N+1 \geq 0
$$

The number $M-N+1$ is called the redundancy of the network, denoted by R.

Facts about Spanning Trees

4. In a network with N vertices and M edges,

$$
M \geq N-1
$$

(otherwise it couldn't possibly be connected!) That is,

$$
M-N+1 \geq 0
$$

The number $M-N+1$ is called the redundancy of the network, denoted by R.
5. If $R=0$, then the network is itself a tree.

If $R>0$, then there are usually several spanning trees.

Counting Spanning Trees

We now know that every spanning tree of an N-vertex network has exactly $N-1$ edges.

Counting Spanning Trees

We now know that every spanning tree of an N-vertex network has exactly $N-1$ edges.

How many different spanning trees are there?

Counting Spanning Trees

We now know that every spanning tree of an N-vertex network has exactly $N-1$ edges.

How many different spanning trees are there?

Of course, this answer depends on the network itself.

Loops and Bridges

- If an edge of a network is a loop, then it is not in any spanning tree.

Loops and Bridges

- If an edge of a network is a loop, then it is not in any spanning tree.
- If an edge of a network is a bridge, then it must belong to every spanning tree.

Loops and Bridges

- If an edge of a network is a bridge, then it must belong to every spanning tree.

Loops and Bridges

- If an edge of a network is a bridge, then it must belong to every spanning tree.

Loops and Bridges

- If an edge of a network is a bridge, then it must belong to every spanning tree.

Loops and Bridges

- If an edge of a network is a bridge, then it must belong to every spanning tree.

Loops and Bridges

- If an edge of a network is a bridge, then it must belong to every spanning tree.

Loops and Bridges

- If an edge of a network is a bridge, then it must belong to every spanning tree.

Counting Spanning Trees

We now know that every spanning tree of an N-vertex network has exactly $N-1$ edges.

Counting Spanning Trees

We now know that every spanning tree of an N-vertex network has exactly $N-1$ edges.

How many different spanning trees are there?

Counting Spanning Trees

We now know that every spanning tree of an N-vertex network has exactly $N-1$ edges.

How many different spanning trees are there?

Of course, this answer depends on the network itself.

Counting Spanning Trees

Counting Spanning Trees

3 spanning trees of this triangle

3 spanning trees of this triangle

= 9 total spanning trees

Counting Spanning Trees

How many spanning trees does this network have?

Counting Spanning Trees

How many spanning trees does this network have?

Counting Spanning Trees

How many spanning trees does this network have?

Counting Spanning Trees

How many spanning trees does this network have?

Answer:
$4 \times 3 \times 3 \times 4=144$.

Counting Spanning Trees

If the graph has circuits that overlap, it is trickier to count spanning trees. For example:

Counting Spanning Trees

If the graph has circuits that overlap, it is trickier to count spanning trees. For example:

- There are $N=4$ vertices \Longrightarrow every spanning tree has $N-1=3$ edges.

Counting Spanning Trees

If the graph has circuits that overlap, it is trickier to count spanning trees. For example:

- There are $N=4$ vertices \Longrightarrow
every spanning tree has $N-1=3$ edges.
- List all the sets of three edges and cross out the ones that are not spanning trees.

Counting Spanning Trees

Counting Spanning Trees

The Number of Spanning Trees of K_{N} (Not in Tannenbaum!)

Since K_{N} has N vertices, we know that every spanning tree of K_{N} has $N-1$ edges.

How many different spanning trees are there?

The Number of Spanning Trees of K_{N} (Not in Tannenbaum!)

Since K_{N} has N vertices, we know that every spanning tree of K_{N} has $N-1$ edges.

How many different spanning trees are there?

We have already seen the answers for K_{2}, K_{3}, and K_{4}.

The Number of Spanning Trees of K_{N}

Number of vertices $(N) \mid$ Number of spanning trees in K_{N}

> 2
> 3
> 4

1
3
16

The Number of Spanning Trees of K_{N}

Number of vertices (N)	Number of spanning trees in K_{N}
1	1
2	1
3	3
4	16

The Number of Spanning Trees of K_{N}

Number of vertices (N)	Number of spanning trees in K_{N}
1	1
2	1
3	3
4	16
5	125

The Number of Spanning Trees of K_{N}

Number of vertices (N)	Number of spanning trees in K_{N}
1	1
2	1
3	3
4	16
5	125
6	1296

The Number of Spanning Trees of K_{N}

Number of vertices (N)	Number of spanning trees in K_{N}
1	1
2	1
3	3
4	16
5	125
6	1296
7	16807
8	262144

The Number of Spanning Trees of K_{N}

Number of vertices (N)	Number of spanning trees in K_{N}
1	1
2	1
3	3
4	16
5	125
6	1296
7	16807
8	262144

What's the pattern?

The Number of Spanning Trees of K_{N}

Number of vertices (N)	Number of spanning trees in K_{N}
1	1
2	1
3	3
4	16
5	125
6	1296
7	16807
8	262144

The Number of Spanning Trees of K_{N}

Number of vertices (N)	Number of spanning trees in K_{N}
1	1
2	1
3	3
4	$16=4^{2}$
5	125
6	1296
7	16807
8	262144

The Number of Spanning Trees of K_{N}

Number of vertices (N)	Number of spanning trees in K_{N}
1	1
2	1
3	3
4	$16=4^{2}$
5	$125=5^{3}$
6	1296
7	16807
8	262144

The Number of Spanning Trees of K_{N}

Number of vertices (N)	Number of spanning trees in K_{N}
1	1
2	1
3	$3=3^{1}$
4	$16=4^{2}$
5	$125=5^{3}$
6	1296
7	16807
8	262144

The Number of Spanning Trees of K_{N}

Number of vertices (N)	Number of spanning trees in K_{N}
1	1
2	1
3	$3=3^{1}$
4	$16=4^{2}$
5	$125=5^{3}$
6	$1296=6^{4}$
7	16807
8	262144

The Number of Spanning Trees of K_{N}

Number of vertices (N)	Number of spanning trees in K_{N}
1	1
2	1
3	$3=3^{1}$
4	$16=4^{2}$
5	$125=5^{3}$
6	$1296=6^{4}$
7	$16807=7^{5}$
8	262144

The Number of Spanning Trees of K_{N}

Number of vertices (N)	Number of spanning trees in K_{N}
1	1
2	1
3	$3=3^{1}$
4	$16=4^{2}$
5	$125=5^{3}$
6	$1296=6^{4}$
7	$16807=7^{5}$
8	$262144=8^{6}$

The Number of Spanning Trees of K_{N}

Number of vertices (N)	Number of spanning trees in K_{N}
1	1
2	$1=2^{0}$
3	$3=3^{1}$
4	$16=4^{2}$
5	$125=5^{3}$
6	$1296=6^{4}$
7	$16807=7^{5}$
8	$262144=8^{6}$

The Number of Spanning Trees of K_{N}

Number of vertices (N)	Number of spanning trees in K_{N}
1	$1=1^{-1}$
2	$1=2^{0}$
3	$3=3^{1}$
4	$16=4^{2}$
5	$125=5^{3}$
6	$1296=6^{4}$
7	$16807=7^{5}$
8	$262144=8^{6}$

The Number of Spanning Trees of K_{N}

Number of vertices (N)	Number of spanning trees in K_{N}
1	$1=1^{-1}$
2	$1=2^{0}$
3	$3=3^{1}$
4	$16=4^{2}$
5	$125=5^{3}$
6	$1296=6^{4}$
7	$16807=7^{5}$
8	$262144=8^{6}$

Cayley's Formula:
The number of spanning trees in K_{N} is $\mathrm{N}^{\mathrm{N}-2}$.

Cayley's Formula:

The number of spanning trees in K_{N} is $\mathrm{N}^{\mathrm{N}-2}$.
For example, K_{16} (the Australia graph!) has

$$
16^{14}=72,057,594,037,927,936
$$

spanning trees.
(By comparison, the number of Hamilton circuits is "only"

$$
15!=1,307,674,368,000 .)
$$

