The Traveling Salesman Problem

Definition: A complete graph K_{N} is a graph with N vertices and an edge between every two vertices.

Definition: A weighted graph is a graph in which each edge is assigned a weight (representing the time, distance, or cost of traversing that edge).

Definition: A Hamilton circuit is a circuit that uses every vertex of a graph once.

Definition: The Traveling Salesman Problem (TSP) is the problem of finding a minimum-weight Hamilton circuit in K_{N}.

The Traveling Salesman Problem

Example: Willy decides to visit every Australian city important enough to be listed on this Wikipedia page.

The Traveling Salesman Problem

Example: Willy decides to visit every Australian city important enough to be listed on this Wikipedia page.

To avoid rental-car fees, he must finish the tour in the same city he starts it in.

The Traveling Salesman Problem

Example: Willy decides to visit every Australian city important enough to be listed on this Wikipedia page.

To avoid rental-car fees, he must finish the tour in the same city he starts it in.

What route minimizes the total distance he has to travel?

The Traveling Salesman Problem

Example: Willy decides to visit every Australian city important enough to be listed on this Wikipedia page.

To avoid rental-car fees, he must finish the tour in the same city he starts it in.

What route minimizes the total distance he has to travel?
I.e., in this weighted K_{16}, which Hamilton circuit has the smallest total weight?

The Brute-Force Algorithm

Willy could solve the problem by brute force:

- Make a list of all possible Hamilton circuits.

The Brute-Force Algorithm

Willy could solve the problem by brute force:

- Make a list of all possible Hamilton circuits.
- Calculate the weight of each Hamilton circuit by adding up the weights of its edges.

The Brute-Force Algorithm

Willy could solve the problem by brute force:

- Make a list of all possible Hamilton circuits.
- Calculate the weight of each Hamilton circuit by adding up the weights of its edges.
- Pick the Hamilton circuit with the smallest total weight.

The Brute-Force Algorithm

Willy could solve the problem by brute force:

- Make a list of all possible Hamilton circuits.
- Calculate the weight of each Hamilton circuit by adding up the weights of its edges.
- Pick the Hamilton circuit with the smallest total weight.

BIG PROBLEM:

The Brute-Force Algorithm

Willy could solve the problem by brute force:

- Make a list of all possible Hamilton circuits.
- Calculate the weight of each Hamilton circuit by adding up the weights of its edges.
- Pick the Hamilton circuit with the smallest total weight.

BIG PROBLEM: There are 16 vertices, so there are

$$
(16-1)!=15!=1,307,674,368,000
$$

Hamilton circuits that each need to be checked.

Solving the TSP Without Brute Force

Idea: At each stage in your tour, choose the closest vertex that you have not visited yet.

This is called the Nearest-Neighbor Algorithm (NNA).

This spreadsheet shows what happens when Willy uses the NNA to construct a Hamilton circuit (with Sydney as the reference vertex).

The Nearest-Neighbor Algorithm

The result: The Nearest-Neighbor algorithm, using Sydney as the reference vertex, yields the Hamilton circuit
$\mathrm{SY} \rightarrow \mathrm{CN} \rightarrow \mathrm{ML} \rightarrow \mathrm{HO} \rightarrow \mathrm{AD} \rightarrow \mathrm{AS} \rightarrow \mathrm{UL} \rightarrow \mathrm{BM} \rightarrow \mathrm{KU}$ $\rightarrow \mathrm{DA} \rightarrow \mathrm{MI} \rightarrow \mathrm{CS} \rightarrow \mathrm{MK} \rightarrow \mathrm{BR} \rightarrow \mathrm{AL} \rightarrow \mathrm{PE} \rightarrow \mathrm{SY}$
whose total weight is $21,049 \mathrm{~km}$.

A randomly chosen Hamilton circuit would have averaged $40,680 \mathrm{~km}$, so this is pretty good.

The Nearest-Neighbor Algorithm

The result: The Nearest-Neighbor algorithm, using Sydney as the reference vertex, yields the Hamilton circuit
$\mathrm{SY} \rightarrow \mathrm{CN} \rightarrow \mathrm{ML} \rightarrow \mathrm{HO} \rightarrow \mathrm{AD} \rightarrow \mathrm{AS} \rightarrow \mathrm{UL} \rightarrow \mathrm{BM} \rightarrow \mathrm{KU}$ $\rightarrow \mathrm{DA} \rightarrow \mathrm{MI} \rightarrow \mathrm{CS} \rightarrow \mathrm{MK} \rightarrow \mathrm{BR} \rightarrow \mathrm{AL} \rightarrow \mathrm{PE} \rightarrow \mathrm{SY}$
whose total weight is $21,049 \mathrm{~km}$.

A randomly chosen Hamilton circuit would have averaged $40,680 \mathrm{~km}$, so this is pretty good.

But can Willy do better?

The Repetitive Nearest-Neighbor Algorithm

Observation: Willy can use any city as the reference vertex!

That is, Willy can execute the Nearest-Neighbor Algorithm sixteen times, using each city once as the reference vertex.

Then, he can pick the Hamilton circuit with the lowest total weight of these sixteen.

This is called the Repetitive Nearest-Neighbor Algorithm (RNNA).

The Repetitive Nearest-Neighbor Algorithm

ef. ver	Hamilon circuit	Weight
AD		
AL		19795
AS		18459
BR		13
BM		
CS		
CN		49
DA		
но		
KU	кu, Da, is,	
мк		23255
ML		
MI		
PE		
sY	U.8	

The Repetitive Nearest-Neighbor Algorithm

Ref. vertex	Ham	Weight
AD		
AL		19795
AS		459
BR	в8.м..cs.m.as.s.l.zm.ku	
вм		
CN		
DA		
но		
мк		23255
ML		
MI	M.as,	20877
PE		19148
SY		21049

The Repetitive Nearest-Neighbor Algorithm

Apparently, using Alice Springs (AS) as the reference vertex yields the best Hamilton circuit so far, namely
$\mathrm{AS} \rightarrow \mathrm{UL} \rightarrow \mathrm{BM} \rightarrow \mathrm{KU} \rightarrow \mathrm{DA} \rightarrow \mathrm{MI} \rightarrow \mathrm{CS} \rightarrow \mathrm{MK} \rightarrow \mathrm{BR}$
$\rightarrow \mathrm{SY} \rightarrow \mathrm{CN} \rightarrow \mathrm{ML} \rightarrow \mathrm{HO} \rightarrow \mathrm{AD} \rightarrow \mathrm{AL} \rightarrow \mathrm{PE} \rightarrow \mathrm{AS}$

The Repetitive Nearest-Neighbor Algorithm

Apparently, using Alice Springs (AS) as the reference vertex yields the best Hamilton circuit so far, namely
$\mathrm{AS} \rightarrow \mathrm{UL} \rightarrow \mathrm{BM} \rightarrow \mathrm{KU} \rightarrow \mathrm{DA} \rightarrow \mathrm{MI} \rightarrow \mathrm{CS} \rightarrow \mathrm{MK} \rightarrow \mathrm{BR}$
$\rightarrow \mathrm{SY} \rightarrow \mathrm{CN} \rightarrow \mathrm{ML} \rightarrow \mathrm{HO} \rightarrow \mathrm{AD} \rightarrow \mathrm{AL} \rightarrow \mathrm{PE} \rightarrow \mathrm{AS}$
Remember: Willy can still start anywhere he wants!
For instance,
$\mathrm{SY} \rightarrow \mathrm{CN} \rightarrow \mathrm{ML} \rightarrow \mathrm{HO} \rightarrow \mathrm{AD} \rightarrow \mathrm{AL} \rightarrow \mathrm{PE} \rightarrow \mathrm{AS}$
$\rightarrow \mathrm{UL} \rightarrow \mathrm{BM} \rightarrow \mathrm{KU} \rightarrow \mathrm{DA} \rightarrow \mathrm{MI} \rightarrow \mathrm{CS} \rightarrow \mathrm{MK} \rightarrow \mathrm{BR} \rightarrow \mathrm{SY}$
represents the same Hamilton circuit.

The Repetitive Nearest-Neighbor Algorithm

Randomly chosen Hamilton circuit: Hamilton circuit using NNA/Sydney: Hamilton circuit using RNNA:

40,680 km
21,049 km
18,459 km

The Repetitive Nearest-Neighbor Algorithm

$\begin{array}{ll}\text { Randomly chosen Hamilton circuit: } & 40,680 \mathrm{~km} \\ \text { Hamilton circuit using NNA/Sydney: } & 21,049 \mathrm{~km} \\ \text { Hamilton circuit using RNNA: } & \mathbf{1 8 , 4 5 9} \mathbf{~ k m}\end{array}$

- In general, there's no way of knowing in advance which reference vertex will yield the best result.

The Repetitive Nearest-Neighbor Algorithm

$\begin{array}{ll}\text { Randomly chosen Hamilton circuit: } & 40,680 \mathrm{~km} \\ \text { Hamilton circuit using NNA/Sydney: } & 21,049 \mathrm{~km} \\ \text { Hamilton circuit using RNNA: } & \mathbf{1 8 , 4 5 9} \mathbf{~ k m}\end{array}$

- In general, there's no way of knowing in advance which reference vertex will yield the best result.
- This algorithm is still efficient, but ...

The Repetitive Nearest-Neighbor Algorithm

$\begin{array}{ll}\text { Randomly chosen Hamilton circuit: } & 40,680 \mathrm{~km} \\ \text { Hamilton circuit using NNA/Sydney: } & 21,049 \mathrm{~km} \\ \text { Hamilton circuit using RNNA: } & \mathbf{1 8 , 4 5 9} \mathbf{~ k m}\end{array}$

- In general, there's no way of knowing in advance which reference vertex will yield the best result.
- This algorithm is still efficient, but ...
- Is it optimal? That is, Can Willy do even better?

The Repetitive Nearest-Neighbor Algorithm

If we look at the map (warning: not quite to scale!) it becomes clear that the RNNA has not produced an optimal Hamilton circuit.

Oops.

Now the algorithm is stuck - some very expensive edges are required to complete the Hamilton circuit.

The Repetitive Nearest-Neighbor Algorithm

Starting from Uluru would have created a different problem.

The Repetitive Nearest-Neighbor Algorithm

Starting from Alice Springs would have created a different problem (but a less harmful one).

It is easy for a human to look at this Hamilton circuit and find a way to improve it.

It is easy for a human to look at this Hamilton circuit and find a way to improve it.

But how do you make such improvements part of the algorithm?

Does starting How about

The Cheapest-Link Algorithm

Idea: Start in the middle.

The Cheapest-Link Algorithm

Idea: Start in the middle.

- Find the single edge that would be cheapest to add.

The Cheapest-Link Algorithm

Idea: Start in the middle.

- Find the single edge that would be cheapest to add.
- Keep doing this until you have a Hamilton circuit.

The Cheapest-Link Algorithm

Idea: Start in the middle.

- Find the single edge that would be cheapest to add.
- Keep doing this until you have a Hamilton circuit.
- Make sure you add exactly two edges at each vertex.

The Cheapest-Link Algorithm

Idea: Start in the middle.

- Find the single edge that would be cheapest to add.
- Keep doing this until you have a Hamilton circuit.
- Make sure you add exactly two edges at each vertex.

This is called the Cheapest-Link Algorithm, or CLA. Here is an example.

Comparing Algorithms

Randomly chosen Hamilton circuit: Hamilton circuit using NNA/Sydney: Hamilton circuit using RNNA: Hamilton circuit using CLA:

40,680 km
$21,049 \mathrm{~km}$
$18,459 \mathrm{~km}$
18,543 km

Comparing Algorithms

Randomly chosen Hamilton circuit: $\quad 40,680 \mathrm{~km}$
Hamilton circuit using NNA/Sydney: $21,049 \mathrm{~km}$
Hamilton circuit using RNNA:
Hamilton circuit using CLA:
$18,459 \mathrm{~km}$
$18,543 \mathrm{~km}$

This didn't help in this case. But it might help in a different example (next time).

Comparing Algorithms

> Randomly chosen Hamilton circuit: $\quad 40,680 \mathrm{~km}$
> Hamilton circuit using NNA/Sydney: $21,049 \mathrm{~km}$
> Hamilton circuit using RNNA:
> Hamilton circuit using CLA:
> $18,459 \mathrm{~km}$
> 18,543 km

This didn't help in this case. But it might help in a different example (next time).

Can Willy do even better?

The Bad News

There is no known algorithm to solve the TSP that is both optimal and efficient.

The Bad News

There is no known algorithm to solve the TSP that is both optimal and efficient.

- Brute-force is optimal but not efficient.
- NNA, RNNA, and CLA are efficient but not optimal.

