The Traveling Salesman Problem

Definition: A complete graph K_{N} is a graph with N vertices and an edge between every two vertices.

The Traveling Salesman Problem

Definition: A complete graph K_{N} is a graph with N vertices and an edge between every two vertices.

Definition: A Hamilton circuit is a circuit that uses every vertex of a graph once.

The Traveling Salesman Problem

Definition: A complete graph K_{N} is a graph with N vertices and an edge between every two vertices.

Definition: A Hamilton circuit is a circuit that uses every vertex of a graph once.

Definition: A weighted graph is a graph in which each edge is assigned a weight (representing the time, distance, or cost of traversing that edge).

The Traveling Salesman Problem

Definition: A complete graph K_{N} is a graph with N vertices and an edge between every two vertices.

Definition: A Hamilton circuit is a circuit that uses every vertex of a graph once.

Definition: A weighted graph is a graph in which each edge is assigned a weight (representing the time, distance, or cost of traversing that edge).

Definition: The Traveling Salesman Problem (TSP) is the problem of finding a minimum-weight Hamilton circuit in K_{N}.

The Traveling Saleswitch Problem

Example: : Sabrina has the following list of errands:

- Pet store (the black cat needs a new litterbox) (P)
- Greenhouse (replenish supply of deadly nightshade) (G)
- Pick up black dress from cleaners (C)
- Drugstore (eye of newt, wing of bat, toothpaste) (D)
- Target (weekly special on cauldrons) (T)

In witch which order should she do these errands in order to minimize the time spent on her broom?

The Traveling Saleswitch Problem

The Traveling Saleswitch Problem

Times between each pair of locations (minutes):

	H	P	G	C	D	T
Home (H)	0	36	32	54	20	40
Pet store (P)	36	0	22	58	54	67
Greenhouse (G)	32	22	0	36	42	71
Cleaners (C)	54	58	36	0	50	92
Drugstore (D)	20	54	42	50	0	45
Target (T)	40	67	71	92	45	0

Possible Hamilton Circuits

	H	P	G	C	D	T
Home (H)	0	36	32	54	20	40
Pet store (P)	36	0	22	58	54	67
Greenhouse (G)	32	22	0	36	42	71
Cleaners (C)	54	58	36	0	50	92
Drugstore (D)	20	54	42	50	0	45
Target (T)	40	67	71	92	45	0

Weight $($ HDTGPCH $)=20+45+71+22+58+54=270$

Possible Hamilton Circuits

	H	P	G	C	D	T
Home (H)	0	36	32	54	20	40
Pet store (P)	36	0	22	58	54	67
Greenhouse (G)	32	22	0	36	42	71
Cleaners (C)	54	58	36	0	50	92
Drugstore (D)	20	54	42	50	0	45
Target (T)	40	67	71	92	45	0

Weight(HDTGPCH) $=20+45+71+22+58+54=270$
Weight $($ HDTPCGH $)=20+45+67+58+36+32=258$

Possible Hamilton Circuits

	H	P	G	C	D	T
Home (H)	0	36	32	54	20	40
Pet store (P)	36	0	22	58	54	67
Greenhouse (G)	32	22	0	36	42	71
Cleaners (C)	54	58	36	0	50	92
Drugstore (D)	20	54	42	50	0	45
Target (T)	40	67	71	92	45	0

Weight (HDTGPCH) $=20+45+71+22+58+54=270$
Weight (HDTPCGH) $=20+45+67+58+36+32=258$
Weight $($ HDTPCGH $)=20+45+67+58+36+32=258$

Possible Hamilton Circuits

- The number of vertices is $N=6$, so...

Possible Hamilton Circuits

- The number of vertices is $N=6$, so...
- ... the number of Hamilton circuits is

$$
5!=5 \times 4 \times 3 \times 2 \times 1=120
$$

- How about listing all possible circuits?

Possible Hamilton Circuits (Page 1)

Hamilton circuit Weight Hamilton circuit Weight

H,C,D,G,P,T,H	275	H,C,P,D,G,T,H	319
H,C,D,G,T,P,H	320	H,C,P,D,T,G,H	314
H,C,D,P,G,T,H	291	H,C,P,G,D,T,H	261
H,C,D,P,T,G,H	328	H,C,P,G,T,D,H	270
H,C,D,T,G,P,H	278	H,C,P,T,D,G,H	298
H,C,D,T,P,G,H	270	H,C,P,T,G,D,H	312
H,C,G,D,P,T,H	293	H,C,T,D,G,P,H	291
H,C,G,D,T,P,H	280	H,C,T,D,P,G,H	299
H,C,G,P,D,T,H	251	H,C,T,G,D,P,H	349
H,C,G,P,T,D,H	244	H,C,T,G,P,D,H	313
H,C,G,T,D,P,H	296	H,C,T,P,D,G,H	341
H,C,G,T,P,D,H	302	H,C,T,P,G,D,H	297

Possible Hamilton Circuits (Page 2)

Hamilton circuit Weight Hamilton circuit Weight

H,D,C,G,P,T,H	235	H,D,P,C,G,T,H	279
H,D,C,G,T,P,H	280	H,D,P,C,T,G,H	327
H,D,C,P,G,T,H	261	H,D,P,G,C,T,H	264
H,D,C,P,T,G,H	298	H,D,P,G,T,C,H	313
H,D,C,T,G,P,H	291	H,D,P,T,C,G,H	301
H,D,C,T,P,G,H	283	H,D,P,T,G,C,H	302
H,D,G,C,P,T,H	263	H,D,T,C,G,P,H	251
H,D,G,C,T,P,H	293	H,D,T,C,P,G,H	269
H,D,G,P,C,T,H	274	H,D,T,G,C,P,H	266
H,D,G,P,T,C,H	297	H,D,T,G,P,C,H	270
H,D,G,T,C,P,H	319	H,D,T,P,C,G,H	258
H,D,G,T,P,C,H	312	H,D,T,P,G,C,H	244

Possible Hamilton Circuits (Page 3)

Hamilton circuit Weight Hamilton circuit Weight

H,G,C,D,P,T,H	279	H,G,P,C,D,T,H	247
H,G,C,D,T,P,H	266	H,G,P,C,T,D,H	269
H,G,C,P,D,T,H	265	H,G,P,D,C,T,H	290
H,G,C,P,T,D,H	258	H,G,P,D,T,C,H	299
H,G,C,T,D,P,H	295	H,G,P,T,C,D,H	283
H,G,C,T,P,D,H	301	H,G,P,T,D,C,H	270
H,G,D,C,P,T,H	289	H,G,T,C,D,P,H	335
H,G,D,C,T,P,H	319	H,G,T,C,P,D,H	327
H,G,D,P,C,T,H	318	H,G,T,D,C,P,H	292
H,G,D,P,T,C,H	341	H,G,T,D,P,C,H	314
H,G,D,T,C,P,H	305	H,G,T,P,C,D,H	298
H,G,D,T,P,C,H	298	H,G,T,P,D,C,H	328

Possible Hamilton Circuits (Page 4)

Hamilton circuit	Weight	Hamilton circuit	Weight
H,P,C,D,G,T,H	297	H,P,G,C,D,T,H	229
H,P,C,D,T,G,H	292	H,P,G,C,T,D,H	251
H,P,C,G,D,T,H	257	H,P,G,D,C,T,H	282
H,P,C,G,T,D,H	266	H,P,G,D,T,C,H	291
H,P,C,T,D,G,H	305	H,P,G,T,C,D,H	291
H,P,C,T,G,D,H	319	H,P,G,T,D,C,H	278
H,P,D,C,G,T,H	287	H,P,T,C,D,G,H	319
H,P,D,C,T,G,H	335	H,P,T,C,G,D,H	293
H,P,D,G,C,T,H	300	H,P,T,D,C,G,H	266
H,P,D,G,T,C,H	349	H,P,T,D,G,C,H	280
H,P,D,T,C,G,H	295	H,P,T,G,C,D,H	280
H,P,D,T,G,C,H	296	H,P,T,G,D,C,H	320

Possible Hamilton Circuits (Page 5)

Hamilton circuit Weight Hamilton circuit Weight

H,T,C,D,G,P,H	282	H,T,G,C,D,P,H	287
H,T,C,D,P,G,H	290	H,T,G,C,P,D,H	279
H,T,C,G,D,P,H	300	H,T,G,D,C,P,H	297
H,T,C,G,P,D,H	264	H,T,G,D,P,C,H	319
H,T,C,P,D,G,H	318	H,T,G,P,C,D,H	261
H,T,C,P,G,D,H	274	H,T,G,P,D,C,H	291
H,T,D,C,G,P,H	229	H,T,P,C,D,G,H	289
H,T,D,C,P,G,H	247	H,T,P,C,G,D,H	263
H,T,D,G,C,P,H	257	H,T,P,D,C,G,H	279
H,T,D,G,P,C,H	261	H,T,P,D,G,C,H	293
H,T,D,P,C,G,H	265	H,T,P,G,C,D,H	235
H,T,D,P,G,C,H	251	H,T,P,G,D,C,H	275

Solving the TSP by Brute Force

What we have just done is the Brute-Force Algorithm:

- Make a list of all possible Hamilton circuits
- Calculate the weight of each Hamilton circuit by adding up the weights of its edges.
- Choose the Hamilton circuit with the smallest total weight.

Solving the TSP by Brute Force

What we have just done is the Brute-Force Algorithm:

- Make a list of all possible Hamilton circuits
- Calculate the weight of each Hamilton circuit by adding up the weights of its edges.
- Choose the Hamilton circuit with the smallest total weight.
- The Brute-Force Algorithm is optimal: it is guaranteed to find a solution.
- OTOH, the algorithm is inefficient: it has to look at all ($N-1$)! Hamilton circuits, and this can take a long time.

Solving the TSP by Brute Force

If your computer can compute one million Hamilton circuits per second...

- $N=6,7,8,9$: instantaneous
- $N=10$: about $1 / 3$ second
- $N=11$: about 4 seconds
- $N=12$: about 40 seconds
- $N=13$: about 8 minutes
- $N=14$: nearly 2 hours
- $N=15$: a little over a day
- $N=20$: over a million years

Solving the TSP Without Brute Force

Is there a better way to tackle the TSP?
That is, is there an optimal algorithm that is also efficient?

Solving the TSP Without Brute Force

Idea: At each stage in your tour, choose the closest vertex that you have not visited yet.

This is called the Nearest-Neighbor Algorithm.

The Traveling Saleswitch Problem

	H	P	G	C	D	T
Home (H)	0	36	32	54	20	40
Pet store (P)	36	0	22	58	54	67
Greenhouse (G)	32	22	0	36	42	71
Cleaners (C)	54	58	36	0	50	92
Drugstore (D)	20	54	42	50	0	45
Target (T)	40	67	71	92	45	0

The Traveling Saleswitch Problem

	H	P	G	C	D	T
Home (H)	0	36	32	54	$\mathbf{2 0}$	40
Pet store (P)	36	0	22	58	54	67
Greenhouse (G)	32	22	0	36	42	71
Cleaners (C)	54	58	36	0	50	92
Drugstore (D)	20	54	42	50	0	45
Target (T)	40	67	71	92	45	0

- If Sabrina starts at home, the closest destination is the drugstore.

The Traveling Saleswitch Problem

	H	P	G	C	D	T
Home (H)	0	36	32	54	$\mathbf{2 0}$	40
Pet store (P)	36	0	22	58	54	67
Greenhouse (G)	32	22	0	36	42	71
Cleaners (C)	54	58	36	0	50	92
Drugstore (D)	20	54	42	50	0	45
Target (T)	40	67	71	92	45	0

- If Sabrina starts at home, the closest destination is the drugstore.
- So, perhaps the Hamilton circuit ought to begin H,D.

The Traveling Saleswitch Problem

The Traveling Saleswitch Problem

Eventually, we end up with the Hamilton circuit
H, T, C, P, G, D, H.

- Weight of this circuit: 274
- Weight of an optimal circuit: 229
- Average weight of a circuit: 287.6

Comparing Brute-Force and Nearest-Neighbor

The Brute-Force Algorithm is optimal but inefficient.

- It is guaranteed to find a solution, but it may take an unreasonably long time to do so.

The Nearest-Neighbor Algorithm is efficient but nonoptimal.

- It is quick and easy, but does not always find the lowest-weight Hamilton circuit.

