The Seven Bridges of Königsberg

- In 1735, the city of Königsberg (present-day Kaliningrad) was divided into four districts by the Pregel River. ${ }^{1}$
- The four districts were connected by seven bridges.
${ }^{1}$ Source for Königsberg maps: MacTutor History of Mathematics archive, www-history.mcs.st-and.ac.uk

The Seven Bridges of Königsberg

The Seven Bridges of Königsberg

The Seven Bridges of Königsberg

Is it possible to design a walking tour of Königsberg in which you cross each of the seven bridges exactly once?

The Mathematics of Networks

The mathematical models we need to solve the Königsberg problem is a graph.

- designing travel routes (Chapters 5, 6)
- connecting networks efficiently (Chapter 7)
- scheduling tasks (Chapter 8)
- coloring regions of maps (Mini-Excursion 2)

Source: http://commons.wikimedia.org/wiki/File:Caffeine_3d_structure.png

Source: upload.wikimedia.org/wikipedia/commons/2/20/AA_route_map.PNG

Source: http://commons.wikimedia.org/wiki/Atlas_of_Denmark

Phylogenetic Tree of Life

Bacteria
 Archaea
 Eucaryota

Source: http://commons.wikimedia.org/wiki/File:Phylogenetic_tree.svg

Source: http://xkcd.com/854/

Graphs

Things that can be modeled with graphs include

- maps
- molecules
- flow charts
- family trees
- Internet (web pages connected by links)
- Facebook/Google+ (people connected by friendship)
- Six Degrees of Kevin Bacon
- ...

The Königsberg Bridge Problem

Euler and the Königsberg Bridge Problem

The great Swiss mathematician Leonhard Euler (1707-1783) became interested in the Königsberg problem around 1735 and published a solution ("Solutio problematis ad geometriam situs pertinentis") in 1741.

Euler and the Königsberg Bridge Problem

The great Swiss mathematician Leonhard Euler (1707-1783) became interested in the Königsberg problem around 1735 and published a solution ("Solutio problematis ad geometriam situs pertinentis") in 1741.

Euler's intuition: The physical map doesn't matter. What matters mathematically is just the list of which regions are connected by bridges.

Euler and the Königsberg Bridge Problem

The great Swiss mathematician Leonhard Euler (1707-1783) became interested in the Königsberg problem around 1735 and published a solution ("Solutio problematis ad geometriam situs pertinentis") in 1741.

Euler's intuition: The physical map doesn't matter. What matters mathematically is just the list of which regions are connected by bridges.

Euler's solution opened up an entire new branch of mathematics, now known as graph theory.

The Bridges of Königsberg

The Bridges of Königsberg

The Bridges of Königsberg

The Bridges of Königsberg

The Bridges of Königsberg

Euler and the Königsberg Bridge Problem

> ". . . this type of solution bears little relationship to mathematics, and I do not understand why you expect a mathematician to produce it, rather than anyone else, for the solution is based on reason alone, and its discovery does not depend on any mathematical principle."

(Leonhard Euler, letter of April 1736)

Euler and the Königsberg Bridge Problem

"This question is so banal, but seemed to me worthy of attention in that neither geometry, nor algebra, nor even the art of counting was sufficient to solve it."
(Leonhard Euler, letter of March 1736)

Routing Problems

The Bridges of Königsberg is an example of a routing problem.

Other examples:

- Walking tour: must cross every bridge once
- Garbage collector: must visit every house once
- Airline traveler: get from Medicine Hat to Nairobi as cheaply as possible

Existence Question: Is an actual route possible?
Optimization Question: Which of all possible routes is the best? (I.e., the shortest, cheapest, most efficient, etc.)

Unicursal Tracings

Which of these figures can you draw without ever lifting your pen from the page, or retracing a previous line?

For which ones can you finish with your pen at the same point it started?

Unicursal Tracings

Which of these figures can you draw without ever lifting your pen from the page, or retracing a previous line?

For which ones can you finish with your pen at the same point it started?

Mathematically, finding a unicursal tracing is equivalent to solving the Königsberg Bridge Problem!

Graphs

Definition: A graph consists of one or more vertices, attached by edges.

Frequently, we draw the vertices as points and the edges as line segments or curves.

This Is Not A Graph In Math 105

This Is Not A Graph In Math 105

Graphs

Definition: A graph consists of one or more vertices, attached by edges.

Frequently, we draw the vertices as points and the edges as line segments or curves

However, it does not matter where the vertices are located on the page or what the edges are shaped like.

Different Representations of Graphs

These five figures all represent the same graph!

Graph Terminology

Vertex set:
$\mathcal{V}=\{A, B, C, D, E, F\}$
Edge set:
$\mathcal{E}=\{A B, B B, B C$,
$C D, C D, D E, B E, A D\}$

Graph Terminology

- The order that we write the two vertices in an edge doesn't matter: $D E$ and $E D$ mean the same thing.

Graph Terminology

Vertex set:

$$
\mathcal{V}=\{A, B, C, D, E, F\}
$$

Edge set:
$\mathcal{E}=\{A B, B B, B C$, $C D, C D, D E, B E, A D\}$

- An edge can attach a vertex to itself (like $B B$); this is called a loop.

Graph Terminology

Vertex set:

$$
\mathcal{V}=\{A, B, C, D, E, F\}
$$

Edge set:
$\mathcal{E}=\{A B, B B, B C$, $C D, C D, D E, B E, A D\}$

- There can be multiple edges between the same endpoints (like $C D$, which is a double edge).

Graph Terminology

Vertex set:

$$
\mathcal{V}=\{A, B, C, D, E, F\}
$$

Edge set:
$\mathcal{E}=\{A B, B B, B C$, $C D, C D, D E, B E, A D\}$

- It doesn't matter if edges cross each other; crossing points do not count as vertices.

Graph Terminology

Vertex set:

$$
\mathcal{V}=\{A, B, C, D, E, F\}
$$

Edge set:
$\mathcal{E}=\{A B, B B, B C$, $C D, C D, D E, B E, A D\}$

- Not every vertex has to have an edge attached to it. A vertex with no edges is called an isolated vertex.

Graphs as Models

Graphs can be used as models for zillions of different structures arising in the real world.

- Facebook: vertices $=$ people, edges $=$ friendships
- Internet: vertices $=$ web pages, edges $=$ links

Vertices $=$ regions of Königsberg; edges $=$ bridges

Vertices $=$ atoms; edges $=$ bonds

Vertices $=$ cities; edges $=$ airplane routes

Vertices $=$ regions of Denmark; edges $=$ common borders

Vertices $=$ states; edges $=$ common borders

Vertices $=$ states; edges $=$ common borders

Phylogenetic Tree of Life

Vertices $=$ groups of species; edges $=$ biological kinship

Graph Terminology: Adjacency and Connectedness

- Two vertices are called adjacent if they are attached directly by at least one edge.
- Two vertices are called connected if they are connected by a sequence of edges.
- Adjacent vertices are always connected, but connected vertices are not necessarily adjacent.

Kansas and Colorado are adjacent

Kansas and Oregon are connected, but not adjacent

Kansas and Alaska are neither adjacent nor connected

Graph Terminology: Degree

The degree of a vertex v is the number of edges attached to v. (A loop counts as two edges.)

Graph Terminology: Degree

The degree of a vertex v is the number of edges attached to v. (A loop counts as two edges.)

Graph Terminology: Degree

The degree of a vertex v is the number of edges attached to v. (A loop counts as two edges.)

An odd vertex is a vertex whose degree is odd. An even vertex is a vertex whose degree is even.

Graph Terminology: Degree

Example: Königsberg.

Vertices = regions of city
Degree of a vertex $=$ number of bridges that go to that region

Graph Terminology: Degree

Example: Königsberg.

Vertices = regions of city
Degree of a vertex $=$ number of bridges that go to that region


```
degree(N) = 3
degree(C) = 5
degree(E) = 3
degree(S) = 3
```


Graph Terminology: Degree

Example: Map of USA.

Vertices $=$ states; degree $=$ number of bordering states

Graph Terminology: Degree

Example: Map of USA.

Vertices $=$ states; degree $=$ number of bordering states

Paths and Circuits

- In many graph models (maps, road networks, Kevin Bacon, ...), we want to travel from one vertex to another by walking along the edges ("taking a trip").
- Rule: A trip cannot use the same edge more than once, but it may pass through the same vertex more than once.
- A trip is called a path if its starting and ending vertices are different. It is called a circuit if the starting and ending vertices are the same.

Trip \#1 (a path)

Trip \#2 (another path)

Trip \#3 (a circuit)

A circuit without beginning or end

Connectedness

A graph is called connected if any two vertices can be linked by a path. Otherwise, it is disconnected.

Connectedness

A graph is called connected if any two vertices can be linked by a path. Otherwise, it is disconnected.

Isolated vertices
Disconnected

No isolated vertices Disconnected

Connected

Bridges

Removing a single edge from a connected graph can make it disconnected. Such an edge is called a bridge.

Bridges

Removing a single edge from a connected graph can make it disconnected. Such an edge is called a bridge.

Bridges

Removing a single edge from a connected graph can make it disconnected. Such an edge is called a bridge.

Bridges

Loops cannot be bridges, because removing a loop from a graph cannot make it disconnected.

$\xrightarrow{\begin{array}{l}\text { delete } \\ \text { loop } e\end{array}}$

Bridges

If two or more edges share both endpoints, then removing any one of them cannot make the graph disconnected. Therefore, none of those edges is a bridge.

Bridges

If two or more edges share both endpoints, then removing any one of them cannot make the graph disconnected. Therefore, none of those edges is a bridge.

