The Method of Pairwise Comparisons

Suggestion from a Math 105 student (8/31/11): Hold a knockout tournament between candidates.

- This satisfies the Condorcet Criterion! A Condorcet candidate will win all his/her matches, and therefore win the tournament. (Better yet, seeding doesn't matter!)
- But, if there is no Condorcet candidate, then it's not clear what will happen.
- Using preference ballots, we can actually hold a round-robin tournament instead of a knockout.

The Method of Pairwise Comparisons (§1.5)

The Method of Pairwise Comparisons

Proposed by Marie Jean Antoine Nicolas de Caritat, marquis de Condorcet (1743-1794)

- Compare each two candidates head-to-head.
- Award each candidate one point for each head-to-head victory.
- The candidate with the most points wins.

The Method of Pairwise Comparisons

Number of Voters	$\mathbf{1 4}$	$\mathbf{1 0}$	$\mathbf{8}$	$\mathbf{4}$	$\mathbf{1}$
1st choice	A	C	D	B	C
2nd choice	B	B	C	D	D
3rd choice	C	D	B	C	B
4th choice	D	A	A	A	A

The Method of Pairwise Comparisons

Number of Voters	$\mathbf{1 4}$	$\mathbf{1 0}$	$\mathbf{8}$	$\mathbf{4}$	$\mathbf{1}$
1st choice	A	C	D	B	C
2nd choice	B	B	C	D	D
3rd choice	C	D	B	C	B
4th choice	D	A	A	A	A

Compare A to B .

- 14 voters prefer A .
- $10+8+4+1=23$ voters prefer B.
- B wins the pairwise comparison and gets 1 point.

The Method of Pairwise Comparisons

Number of Voters	$\mathbf{1 4}$	$\mathbf{1 0}$	$\mathbf{8}$	$\mathbf{4}$	$\mathbf{1}$
1st choice	A	C	D	B	C
2nd choice	B	B	C	D	D
3rd choice	C	D	B	C	B
4th choice	D	A	A	A	A

Compare C to D :

- $14+10+1=25$ voters prefer C.
- $8+4=12$ voters prefer D.
- C wins the pairwise comparison and gets 1 point.

The Method of Pairwise Comparisons

Number of Voters	$\mathbf{1 4}$	$\mathbf{1 0}$	$\mathbf{8}$	$\mathbf{4}$	$\mathbf{1}$
1st choice	A	C	D	B	C
2nd choice	B	B	C	D	D
3rd choice	C	D	B	C	B
4th choice	D	A	A	A	A

- Compare A to C... A to D... B to C... B to D...

The Method of Pairwise Comparisons

Number of Voters	$\mathbf{1 4}$	$\mathbf{1 0}$	$\mathbf{8}$	$\mathbf{4}$	$\mathbf{1}$
1st choice	A	C	D	B	C
2nd choice	B	B	C	D	D
3rd choice	C	D	B	C	B
4th choice	D	A	A	A	A

	A	B	C	D	Wins	Losses	Points
A							
B							
C							
D							

The Method of Pairwise Comparisons

Number of Voters	$\mathbf{1 4}$	$\mathbf{1 0}$	$\mathbf{8}$	$\mathbf{4}$	$\mathbf{1}$
1st choice	A	C	D	B	C
2nd choice	B	B	C	D	D
3rd choice	C	D	B	C	B
4th choice	D	A	A	A	A

	A	B	C	D	Wins	Losses	Points
A		14					
B	23						
C							
D							

The Method of Pairwise Comparisons

Number of Voters	$\mathbf{1 4}$	$\mathbf{1 0}$	$\mathbf{8}$	$\mathbf{4}$	$\mathbf{1}$
1st choice	A	C	D	B	C
2nd choice	B	B	C	D	D
3rd choice	C	D	B	C	B
4th choice	D	A	A	A	A

	A	B	C	D	Wins	Losses	Points
A		14	14	14			
B	23						
C	23						
D	23						

The Method of Pairwise Comparisons

Number of Voters	$\mathbf{1 4}$	$\mathbf{1 0}$	$\mathbf{8}$	$\mathbf{4}$	$\mathbf{1}$
1st choice	A	C	D	B	C
2nd choice	B	B	C	D	D
3rd choice	C	D	B	C	B
4th choice	D	A	A	A	A

	A	B	C	D	Wins	Losses	Points
A		14	14	14			
B	23		18				
C	23	19					
D	23						

The Method of Pairwise Comparisons

Number of Voters	$\mathbf{1 4}$	$\mathbf{1 0}$	$\mathbf{8}$	$\mathbf{4}$	$\mathbf{1}$
1st choice	A	C	D	B	C
2nd choice	B	B	C	D	D
3rd choice	C	D	B	C	B
4th choice	D	A	A	A	A

	A	B	C	D	Wins	Losses	Points
A		14	14	14			
B	23		18	28			
C	23	19		25			
D	23	9	12				

The Method of Pairwise Comparisons

Number of Voters	$\mathbf{1 4}$	$\mathbf{1 0}$	$\mathbf{8}$	$\mathbf{4}$	$\mathbf{1}$
1st choice	A	C	D	B	C
2nd choice	B	B	C	D	D
3rd choice	C	D	B	C	B
4th choice	D	A	A	A	A

	A	B	C	D	Wins	Losses	Points
A		14	14	14	-	B,C,D	0
B	23		18	28	A,C	D	2
C	23	19		25	A,B,D	-	3
D	23	9	12		A	B,C	1

The Method of Pairwise Comparisons

Number of Voters	$\mathbf{1 4}$	$\mathbf{1 0}$	$\mathbf{8}$	$\mathbf{4}$	$\mathbf{1}$
1st choice	A	C	D	B	C
2nd choice	B	B	C	D	D
3rd choice	C	D	B	C	B
4th choice	D	A	A	A	A

	A	B	C	D	Wins	Losses	Points
A		14	14	14	-	B,C,D	0
B	23		18	28	A,C	D	2
C	23	19		25	A,B,D	-	3
D	23	9	12		A	B,C	1

Evaluating the Method of Pairwise Comparisons

- The Method of Pairwise Comparisons satisfies the Majority Criterion.
(A majority candidate will win every pairwise comparison.)

Evaluating the Method of Pairwise Comparisons

- The Method of Pairwise Comparisons satisfies the Majority Criterion.
(A majority candidate will win every pairwise comparison.)
- The Method of Pairwise Comparisons satisfies the Condorcet Criterion.
(A Condorcet candidate will win every pairwise comparison - that's what a Condorcet candidate is!)

Evaluating the Method of Pairwise Comparisons

- The Method of Pairwise Comparisons satisfies the Public-Enemy Criterion.
(If there is a public enemy, s/he will lose every pairwise comparison.)

Evaluating the Method of Pairwise Comparisons

- The Method of Pairwise Comparisons satisfies the Public-Enemy Criterion.
(If there is a public enemy, $s /$ he will lose every pairwise comparison.)
- The Method of Pairwise Comparisons satisfies the Monotonicity Criterion.
(Ranking Candidate X higher can only help X in pairwise comparisons.)

Evaluating the Method of Pairwise Comparisons

- The Method of Pairwise Comparisons satisfies the Public-Enemy Criterion.
(If there is a public enemy, $s /$ he will lose every pairwise comparison.)
- The Method of Pairwise Comparisons satisfies the Monotonicity Criterion.
(Ranking Candidate X higher can only help X in pairwise comparisons.)

Does the Method of Pairwise Comparisons have any drawbacks?

How Many Pairwise Comparisons?

Problem \#1: It's somewhat inefficient. How many pairwise comparisons are necessary if there are N candidates? How many spaces are there in the crosstable?

How Many Pairwise Comparisons?

- N^{2} squares in crosstable
- N squares on the main diagonal don't count
- Other squares all come in pairs

$$
\text { Number of comparisons }=\frac{N^{2}-N}{2}=\frac{N(N-1)}{2}
$$

Be Careful!

Number of pairwise comparisons with N candidates:

$$
\frac{N(N-1)}{2}
$$

Number of points on a Borda count ballot with N candidates:

$$
\frac{N(N+1)}{2} .
$$

(To remember which is which, work out a small example, like $N=3$.)

Evaluating the Method of Pairwise Comparisons

Problem \#2 (the "rock-paper-scissors problem"):
Ties are very common under the Method of Pairwise Comparisons.

Evaluating the Method of Pairwise Comparisons

Number of voters	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{6}$
1st	A	B	C
2nd	B	C	A
3rd	C	A	B

- The Method of Pairwise Comparisons results in a three-way tie.
- Under any other system we have discussed, C would win.

Comparison of Voting Methods

	Maj	Cond	PE	Mono
Plurality	Yes	No	No	Yes
Borda Count	No	No	Yes	Yes
PWE	Yes	No	Yes	No
Pairwise Comparisons	Yes	Yes	Yes	Yes

Maj $=$ Majority; Cond $=$ Condorcet;
PE = Public-Enemy; Mono $=$ Monotonicity

The IIA Criterion

Number of voters	$\mathbf{9}$	$\mathbf{1 1}$	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{3}$
1st	A	B	D	C	D
2nd	C	A	B	A	C
3rd	D	C	C	D	B
4th	B	D	A	B	A

(1) Who wins?

The IIA Criterion

Number of voters	$\mathbf{9}$	$\mathbf{1 1}$	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{3}$
1st	A	B	D	C	D
2nd	C	A	B	A	C
3rd	D	C	C	D	B
4th	B	D	A	B	A

(2) What happens if D is disqualified?

The IIA Criterion

Independence-Of-Irrelevant-Alternatives (IIA) Criterion:

If Candidate A is the winner of an election, and Candidate B is suddenly disqualified, then A should still win the election.

We have just seen that the Method of Pairwise Comparisons violates IIA.

Unfortunately, none of the systems we have studied always meet the IIA Criterion!

Comparison of Voting Methods

	Maj	Cond	PE	Mono	IIA
Plurality	Yes	No	No	Yes	No
Borda Count	No	No	Yes	Yes	No
Plurality-With-Elim.	Yes	No	Yes	No	No
Pairwise Comparisons	Yes	Yes	Yes	Yes	No

Maj $=$ Majority; Cond $=$ Condorcet;
PE = Public-Enemy; Mono = Monotonicity;
IIA $=$ Independence of Irrelevant Alternatives

Which Voting System Is Best?

So, which voting system Is best?

There is no purely mathematical answer to this question.

Arrow's Theorem: There is no voting system that always satisfies all four voting criteria - Majority, Condorcet, Monotonicity and IIA.

So, the answer depends which fairness criteria you think are the most important.

