New combinatorial models for the Genocchi and median Genocchi numbers.

Michelle Wachs
University of Miami

Joint work with Alex Lazar

The Genocchi numbers

n	1	2	3	4	5	6						
g_{n}	1	1	3	17	155	2073						
h_{n}	2	8	56	608	9440	198272						
$\sum_{n \geq 1} \frac{x^{2 n}}{(2 n)!}=x \tan \frac{x}{2}$												

Seidel triangle (1877) relates Genocchi numbers g_{n} to median Genocchi numbers h_{n}.

The Genocchi numbers

n	1	2	3	4	5	6	
g_{n}	1	1	3	17	155	2073	
h_{n}	2	8	56	608	9440	198272	
$\sum_{n \geq 1} g_{n} \frac{x^{2 n}}{(2 n)!}=x \tan \frac{x}{2}$							

Seidel triangle (1877) relates Genocchi numbers g_{n} to median Genocchi numbers h_{n}.

Barsky-Dumont (1979):

$$
\begin{aligned}
& \sum_{n \geq 1} g_{n} x^{n}=\sum_{n \geq 1} \frac{(n-1)!n!x^{n}}{\prod_{k=1}^{n}\left(1+k^{2} x\right)} \\
& \sum_{n \geq 1} h_{n} x^{n}=\sum_{n \geq 1} \frac{n!(n+1)!x^{n}}{\prod_{k=1}^{n}(1+k(k+1) x)}
\end{aligned}
$$

Combinatorial definition - Dumont 1974

n	1	2	3	4	5	6
g_{n}	1	1	3	17	155	2073
h_{n}	2	8	56	608	9440	198272

Genocchi numbers:

$$
g_{n}=\mid\left\{\sigma \in \mathfrak{S}_{2 n-2}: i \leq \sigma(i) \text { if } i \text { is odd; } i>\sigma(i) \text { if } i \text { is even }\right\} \mid .
$$

These are called Dumont permutations.

$$
g_{3}=|\{(1,2)(3,4),(1,3,4,2),(1,4,2)(3)\}|=3
$$

median Genocchi numbers:

$$
h_{n}=\mid\left\{\sigma \in \mathfrak{S}_{2 n+2}: i<\sigma(i) \text { if } i \text { is odd; } i>\sigma(i) \text { if } i \text { is even }\right\} \mid .
$$

These are called Dumont derangements.

$$
h_{1}=|\{(1,2)(3,4),(1,3,4,2)\}|=2
$$

New permutation models

$\sigma \in \mathfrak{S}_{2 n}$ is a D-permutation if $i \leq \sigma(i)$ whenever i is odd and $i \geq \sigma(i)$ whenever i is even.
$\{(1,2)(3,4),(1,3,4,2),(1,4,2)(3),(1,2)(3)(4)$,
$(1,4)(2)(3),(3,4)(1)(2),(1,3,4)(2),(1)(2)(3)(4)\}$
$\mathcal{D C}_{2 n}=\{D$-cycles on $[2 n]\}, \quad \mathcal{D}_{2 n}=\{D$-permutations on $[2 n]\}$.
$\mathcal{D} \mathcal{C}_{2 n} \subseteq\{$ Dumont derange. on $[2 n]\} \subseteq\{$ Dumont perm. on $[2 n]\} \subseteq \mathcal{D}_{2 n}$.

$$
h_{n-1} \quad g_{n+1}
$$

New permutation models

$\sigma \in \mathfrak{S}_{2 n}$ is a E-permutation if $i>\sigma(i)$ implies i is even and $\sigma(i)$ is odd.
$\{(1,2)(3,4),(1,2,4)(3),(1,3,4)(2),(1,2)(3)(4)$,
$(1,4)(2)(3),(3,4)(1)(2),(1,2,3,4),(1)(2)(3)(4)\}$
$\mathcal{E C}_{2 n}=\{E$-cycles on $[2 n]\}, \quad \mathcal{E}_{2 n}=\{E$-permutations on $[2 n]\}$.

New permutation models

$\sigma \in \mathfrak{S}_{2 n}$ is a E-permutation if $i>\sigma(i)$ implies i is even and $\sigma(i)$ is odd.
$\{(1,2)(3,4),(1,2,4)(3),(1,3,4)(2),(1,2)(3)(4)$,
$(1,4)(2)(3),(3,4)(1)(2),(1,2,3,4),(1)(2)(3)(4)\}$
$\mathcal{E C}_{2 n}=\{E$-cycles on $[2 n]\}, \quad \mathcal{E}_{2 n}=\{E$-permutations on $[2 n]\}$.

Theorem (Lazar, W.)

$$
\begin{aligned}
& h_{n}=\left|\mathcal{D}_{2 n}\right|=\left|\mathcal{E}_{2 n}\right| \\
& g_{n}=\left|\mathcal{D C}_{2 n}\right|
\end{aligned}
$$

Conjecture (Lazar, W.)

$$
g_{n}=\left|\mathcal{E C}_{2 n}\right|
$$

Chromatic polynomial

Let $\Gamma_{2 n}$ be the bipartite graph on vertex set
$\{1,3, \ldots, 2 n-1\} \sqcup\{2,4, \ldots, 2 n\}$ with an edge between $2 i-1$ and $2 j$ for all $i \leq j$.

Chromatic polynomial

Let $\Gamma_{2 n}$ be the bipartite graph on vertex set $\{1,3, \ldots, 2 n-1\} \sqcup\{2,4, \ldots, 2 n\}$ with an edge between $2 i-1$ and $2 j$ for all $i \leq j$.

Let $\chi_{\Gamma_{2 n}}(t)$ be the chromatic polynomial of $\Gamma_{2 n}(t)$.

n	$t^{-1} \chi \Gamma_{2 n}(t)$	$t=-1$	$t=0$
1	$t-1$	-2	-1
2	$t^{3}-3 t^{2}+3 t-1$	-8	-1
3	$t^{5}-6 t^{4}+15 t^{3}-19 t^{2}+12 t-3$	-56	-3
4	$t^{7}-10 t^{6}+45 t^{5}-115 t^{4}+177 t^{3}-162 t^{2}+81 t-17$	-608	-17

Generating function for the chromatic polynomial

Theorem (Lazar, W.)

$$
\sum_{n \geq 1} \chi_{\Gamma_{2 n}}(t) z^{n}=\sum_{n \geq 1} \frac{(t)_{n}(t-1)_{n} z^{n}}{\prod_{k=1}^{n}(1-k(t-k) z)}
$$

where $(a)_{n}$ denotes the falling factorial $a(a-1) \cdots(a-n+1)$.
Multiply by $-t^{-1}$ and set $t=0$. We get the Barsky-Dumont generating function for g_{n} :

$$
\sum_{n \geq 1} g_{n} z^{n}=\sum_{n \geq 1} \frac{(n-1)!n!z^{n}}{\prod_{k=1}^{n}\left(1+k^{2} z\right)}
$$

Multiply by $-t^{-1}$ and set $t=-1$. We get the Barsky-Dumont generating function for h_{n} :

$$
\sum_{n \geq 1} h_{n} z^{n}=\sum_{n \geq 1} \frac{n!(n+1)!z^{n}}{\prod_{k=1}^{n}(1+k(k+1) z)}
$$

Generating function for the chromatic polynomial

Theorem (Lazar, W.)

$$
\sum_{n \geq 1} \chi_{\Gamma_{2 n}}(t) z^{n}=\sum_{n \geq 1} \frac{(t)_{n}(t-1)_{n} z^{n}}{\prod_{k=1}^{n}(1-k(t-k) z)}
$$

where $(a)_{n}$ denotes the falling factorial $a(a-1) \cdots(a-n+1)$.
Corollary:

$$
-(t)^{-1} \chi_{\Gamma_{2 n}}(t)= \begin{cases}h_{n} & \text { if } t=-1 \\ g_{n} & \text { if } t=0\end{cases}
$$

Generating function for the chromatic polynomial

Theorem (Lazar, W.)

$$
\sum_{n \geq 1} \chi_{\Gamma_{2 n}}(t) z^{n}=\sum_{n \geq 1} \frac{(t)_{n}(t-1)_{n} z^{n}}{\prod_{k=1}^{n}(1-k(t-k) z)}
$$

where $(a)_{n}$ denotes the falling factorial $a(a-1) \cdots(a-n+1)$.
Corollary:

$$
-(t)^{-1} \chi_{\Gamma_{2 n}}(t)= \begin{cases}h_{n} & \text { if } t=-1 \\ g_{n} & \text { if } t=0\end{cases}
$$

Proof steps
(1) use the Rota-Whitney NBC theorem to determine the coefficients of $\chi_{\Gamma_{2 n}}(t)$ by counting a certain set $\mathcal{F}_{2 n}$ of forests .
(2) construct a bijection from $\mathcal{F}_{2 n}$ to $\mathcal{D}_{2 n}$
(3) construct a bijection from $\mathcal{D}_{2 n}$ to a certain set of "surjective staircases"
(9) use a generating function of Randrianarivony-Zeng (1996) for an enumerator of surjective staircases with multiple statistics.

D-permutations

The first two steps yield,

$$
\chi_{\Gamma_{2 n}}(t)=\sum_{\sigma \in \mathcal{D}_{2 n}}(-t)^{c y c(\sigma)}
$$

where $\operatorname{cyc}(\sigma)$ denotes the number of cycles of σ.

D-permutations

The first two steps yield,

$$
\chi_{\Gamma_{2 n}}(t)=\sum_{\sigma \in \mathcal{D}_{2 n}}(-t)^{c y c(\sigma)}
$$

where $\operatorname{cyc}(\sigma)$ denotes the number of cycles of σ.

- Since g_{n} is obtained by setting $t=0$ in

$$
-(t)^{-1} \chi_{\Gamma_{2 n}}(t)=\sum_{\sigma \in \mathcal{D}_{2 n}}(-t)^{c y c(\sigma)-1}
$$

we get $g_{n}=\left|\mathcal{D C}_{2 n}\right|$

- Since h_{n} is obtained by setting $t=-1$ in

$$
-(t)^{-1} \chi_{\Gamma_{2 n}}(t)=\sum_{\sigma \in \mathcal{D}_{2 n}}(-t)^{c y c(\sigma)-1}
$$

we get $h_{n}=\left|\mathcal{D}_{2 n}\right|$

E-permutations

Recall $\Gamma_{2 n}$ is the bipartite graph on vertex set $\{1,3, \ldots, 2 n-1\} \sqcup\{2,4, \ldots, 2 n\}$ with an edge between $2 i-1$ and $2 j$ for all $i \leq j$.

Observation: $\Gamma_{2 n}$ is the incomparability graph of the poset $P_{2 n}$ on [2n] with order relation given by $x \leq_{P_{2 n}} y$ if:

- $x \leq y$ and $x \equiv y \bmod 2$
- $x<y, x$ is even, and y is odd.

P_{6}

A result of Chung and Graham

A permutation σ of the vertices of a poset P has a P-drop at x if $x>_{p} \sigma(x)$.
Example: The cycle (532164) has P_{6}-drops at 5, 3, 6 only. Not 2
Chung-Graham (1995): For any finite poset P,

$$
\chi_{\mathrm{inc}(P)}(t)=\sum_{k=0}^{|P|-1} d(P, k)\binom{t+k}{|P|}
$$

where $d(P, k)$ is the number of permutations of P with exactly k P-drops.

A result of Chung and Graham

A permutation σ of the vertices of a poset P has a P-drop at x if $x>_{p} \sigma(x)$.
Example: The cycle (532164) has P_{6}-drops at 5, 3, 6 only. Not 2
Chung-Graham (1995): For any finite poset P,

$$
\chi_{\operatorname{inc}(P)}(t)=\sum_{k=0}^{|P|-1} d(P, k)\binom{t+k}{|P|}
$$

where $d(P, k)$ is the number of permutations of P with exactly k P-drops.

$$
\chi_{\mathrm{inc}(P)}(-1)=\sum_{k=0}^{|P|-1} d(P, k)\binom{k-1}{|P|}=d(P, 0)
$$

A result of Chung and Graham

A permutation σ of the vertices of a poset P has a P-drop at x if $x>_{p} \sigma(x)$.
Example: The cycle (532164) has P_{6}-drops at 5, 3, 6 only. Not 2
Chung-Graham (1995): For any finite poset P,

$$
\chi_{\operatorname{inc}(P)}(t)=\sum_{k=0}^{|P|-1} d(P, k)\binom{t+k}{|P|}
$$

where $d(P, k)$ is the number of permutations of P with exactly k P-drops.

$$
\chi_{\mathrm{inc}(P)}(-1)=\sum_{k=0}^{|P|-1} d(P, k)\binom{k-1}{|P|}=d(P, 0)
$$

A permutation in $\sigma \in \mathfrak{S}_{2 n}$ has no $P_{2 n}$-drops if for all $i \in[2 n]$, $i>\sigma(i)$ implies i is even and $\sigma(i)$ is odd.

E-permutations

Putting all this together, we have

$$
h_{n}=\chi_{\Gamma_{2 n}}(-1)=\left|\mathcal{E}_{2 n}\right|
$$

Conjecture

The number of D-permutations on [2n] with k cycles equals the number of E-permutations on [2n] with k cycles for all k.
Consequently

$$
g_{n}=\left|\mathcal{E} \mathcal{C}_{2 n}\right|
$$

We have verified this by computer for $n \leq 6$.

Byproduct: expansion in powers of 2

Theorem (Lazar-W.)

$$
\begin{aligned}
& h_{n}=\sum_{j=1}^{n-1} h_{n-1, j} 2^{j+1} \\
& g_{n}=\sum_{j=0}^{n-2} g_{n-2, j} 2^{j}
\end{aligned}
$$

where

- $h_{n, j}$ is the number of D-permutations on [2n] with exactly j cycles that are not even fixed points,
- $g_{n, j}$ is the number of D-permutations on [2n] with exactly j cycles that are not fixed points

Sundaram (1995) also has an expansion for g_{n} in powers of 2 .

Some other geometric models and refinements

- Sundaram (1995): Möbius invariant of poset of partitions of [2n] with an even number of blocks equals $(2 n-1)!g_{n}$
- Feigin (2011): Poincaré polynomial of a certain degenerate flag variety refines the normalized median Genocchi numbers $\frac{h_{n}}{2^{n-1}}$.
- Hetyei (2017): Number of regions in the homogenized Linial arrangement equals h_{n}.
- Lazar,W. (2019): Type B and Dowling analogs: $h_{n}(m)$ and $g_{n}(m)$
- Lazar (2020): Generalization to other Ferrers graphs

