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Main Characters: (Rational) Polytopes!

Let P to be a rational d-polytope in Rd , i.e., convex hull of finitely
many points in Qd .

For a positive integer t, let LP(t) denote the number of integer lattice
points in tP.

Theorem: (Ehrhart 1962) Given a rational polytope P, the counting
function LP(t) := |tP ∩ Zd | is a quasipolynomial of the form

vol(P)td + kd−1(t)td−1 + · · ·+ k1(t)t + k0(t),

where k0(t), k1(t), . . . , kd−1(t) are periodic functions in t. We call LP(t)
the Ehrhart quasipolynomial of P, and each period of
k0(t), k1(t), . . . , kd−1(t) divides the denominator q of P, which is the least
common multiple of all its vertex coordinate denominators.
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Ehrhart Quasipolynomials

A quasipolynomial LP(t) is a function Z→ R of the form

LP(t) = kd(t)td + · · ·+ k1(t)t + k0(t),

where k0, · · · , kd are periodic functions in the integer variable t.

Alternatively, for a quasipolynomial, there exist a positive integer q and
polynomials f0, . . . , fp−1, such that

LP(t) =


f0(t) if t ≡ 0 mod q

f1(t) if t ≡ 1 mod q
...

fp−1(t) if t ≡ q − 1 mod q.
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Ehrhart Series

The Ehrhart series is the rational generating function

Ehr(P; z) :=
∑
t≥0

LP(t)z t =
h∗(P; z)

(1− zq)d+1
,

where h∗(P; z) is a polynomial of degree less than q(d + 1) called the
h∗-polynomial of P.
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Ehrhart Theory of Rational Polytopes

Let P = conv{
(−1

2 , 1
)
,
(−1

2 ,−1
)
,
(

1
2 , 1
)
,
(

1
2 ,−1

)
}.
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Ehrhart Theory of Rational Polytopes

Theorem: (Ehrhart–Macdonald Reciprocity, 1971)
Let P be a rational polytope. Then LP(−t) = (−1)dLP◦(t).
Similarly, Ehr

(
P; 1

z

)
= (−1)d+1 Ehr(P◦; z).

Theorem:(Stanley’s Non-negativity Result, 1980)

For a rational d-polytope with Ehr(P; z) = h∗(P;z)
(1−zq)d+1 , the coefficients of

the h∗-polynomial are non-negative integers, i.e., h∗j ≥ Z≥0.

Theorem: (Stanley’s Monotonicity Result, 1993) For P ⊆ Q, where qP
and qQ are integral for some q ∈ Z>0, h∗(P) ≤ h∗(Q).
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Goals

1 Present a generalization of a decomposition of the h∗-polynomial for
lattice polytopes due to Betke and McMullen (1985).

(i) Use this decomposition to provide another proof of Stanley’s
Monotonicity Result.

2 Present a generalization of the h∗-polynomial for lattice polytopes
due to Stapledon (2009).

(i) Application of this decomposition.
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Set-Up and Notation

A rational pointed simplicial cone is a set of the form

K (W) =

{
n∑

i=1

λiwi : λi ≥ 0

}
,

where W := {w1, . . . ,wn} is a set of linearly independent vectors in
Zd .

Define the open parallelepiped associated with K (W) as

Box(W) :=

{
n∑

i=1

λiwi : 0 < λi < 1

}
.

Let u : Rd → R denote the projection onto the last coordinate. We
then define the box polynomial as

B(W; z) :=
∑

v∈Box(W)∩Zd

zu(v).
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Set-Up and Notation

Example: Let W = {(1, 3), (2, 3)}. Then

Box(W ) = {λ1(1, 3) + λ2(2, 3) : 0 < λ1, λ2 < 1}.

Thus,
Box(W)∩Z2 = {(1, 2), (2, 4)}
and its associated box
polynomial is

B(W; z) = z2 + z4.
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Set-Up and Notation

Define the fundamental parallelepiped Π(W) to be the half-open
variant of Box(W), namely

Π(W) :=

{
n∑

i=1

λiwi : 0 ≤ λi < 1

}
.
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Set-Up and Notation

For a rational polytope P ⊂ Rd with vertices v1, . . . , vn ∈ Qd , we lift
the vertices into Rd+1 by appending a 1 as the last coordinate. Then
the cone of P is

cone(P) =

{
n∑

i=1

λi (vi , 1) : λi ≥ 0

}
.
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Set-Up and Notation

A triangulation T of a d-polytope P is a subdivision of P into
simplices (of all dimensions) that is closed under taking faces.

If all vertices of T are rational points, define the denominator of T to
be the least common multiple of all vertex coordinate denominators of
the faces of T .
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Set-Up and Notation

For each ∆ ∈ T , we define the h-polynomial of ∆ with respect to T
as

hT (∆; z) := (1− z)d−dim(∆)
∑

∆⊆Φ∈T

(
z

1− z

)dim(Φ)−dim(∆)

,

where the sum is over all simplices Φ ∈ T containing ∆.

For a simplex ∆ with denominator p, let W be the set of integral ray
generators of cone(∆) at height p. We define the h∗-polynomial of ∆
as the generating function of the last coordinate of integer points in
Π(W) := Π(∆), that is,

h∗(∆; z) =
∑

v∈Π(∆)∩Zd+1

zu(v).
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Decomposition à la Betke–McMullen

Let P be a rational d-polytope and T be a triangulation with
denominator q.

For an m-simplex ∆ ∈ T , let W = {(r1, q), . . . , (rm+1, q)}, where the
(ri , q) are the integral ray generators for cone(∆) at height q.

Set B(W; z) =: B(∆; z) and Box(W) =: Box(∆).

Lemma: Fix a triangulation T with denominator q of a rational
d-polytope P and let ∆ ∈ T . Then h∗(∆; z) =

∑
Ω⊆∆ B(Ω; z).
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Decomposition à la Betke–McMullen

Theorem: (Beck–Braun–Vindas-Meléndez 2020+) Fix a triangulation T
with denominator q of a rational d-polytope P,

Ehr(P; z) =

∑
Ω∈T B(Ω; z)h(Ω; zq)

(1− zq)d+1
.

Proof Sketch:

Write P as the disjoint union of all open nonempty simplices in T
(Ehr(P; z) = 1 +

∑
∆∈T\∅ Ehr(∆◦; z)).

Use Ehrhart–Macdonald reciprocity.

Apply previous lemma.

Use the symmetry of box polynomials.

Use the definition of the h-polynomial.
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Rational h∗-Monotonicity

Theorem: (Stanley 1993) Suppose P ⊆ Q are rational polytopes with qP
and qQ integral (for minimal possible q ∈ Z>0). Define the
h∗-polynomials via

Ehr(P; z) =
h∗(P; z)

(1− zq)dim(P)+1
and Ehr(Q; z) =

h∗(Q; z)

(1− zq)dim(Q)+1
.

Then h∗i (P; z) ≤ h∗i (Q; z) coefficient-wise.
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Rational h∗-Monotonicity

Lemma: (Beck–Braun–Vindas-Meléndez 2020+) Suppose P is a polytope
and T a triangulation of P. Let P ⊆ Q be a polytope and T ′ be a
triangulation of Q such that T ′ restricted to P is T . Further, if
dim(P) < dim(Q), assume that there exists a set of affinely independent
vertices v1, . . . , vn of Q outside the affine span of P such that

1 the join T ∗ conv{v1, . . . , vn} is a subcomplex of T ′ and

2 dim(P ∗ conv{v1, . . . , vn}) = dim(Q).

For every face Ω ∈ T , the coefficient-wise inequality hT (Ω; z) ≤ hT ′(Ω, z)
holds.
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Rational h∗-Monotonicity

Theorem: (Stanley 1993) Suppose P ⊆ Q are rational polytopes with qP
and qQ integral. Then h∗i (P; z) ≤ h∗i (Q; z) coefficient-wise.

Proof Sketch:

Let P contained in Q and let T be a triangulation of P and T ′ a
triangulation of Q such that T ′|P is T , where if dim(P) < dim(Q)
the triangulation T ′ satisfies the conditions from the previous lemma.

By rational Betke–McMullen, h∗(P; z) =
∑

Ω∈T B(Ω; z)h(Ω; zq).

Since P ⊆ Q,
h∗(Q; z) =

∑
Ω∈T B(Ω; z)hT ′|P (Ω; zq) +

∑
Ω∈T ′\T B(Ω; z)hT ′(Ω; zq).

By the lemma, the coefficients of
∑

Ω∈T B(Ω; z)hT ′|P (Ω; zq)
dominate the coefficients of

∑
Ω∈T B(Ω; z)hT ′(Ω; zq).∑

Ω∈T B(Ω; z)h(Ω; zq) ≤
∑

Ω∈T B(Ω; z)hT ′|P (Ω; zq) ≤∑
Ω∈T B(Ω; z)hT ′|P (Ω; zq) +

∑
Ω∈T ′\T B(Ω; z)hT ′(Ω; zq).
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Rational h∗-Monotonicity

Theorem: (Stanley 1993) Suppose P ⊆ Q are rational polytopes with qP
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Decomposition from Boundary Triangulation

Set-up:

Fix a boundary triangulation T with denominator q of a rational
d-polytope P.

Take ` ∈ Z>0, such that `P contains a lattice point a in its interior.
Thus (a, `) ∈ cone(P)◦ ∩ Zd+1 is a lattice point in the interior of the
cone of P at height ` and cone((a, `)) is the ray through the point
(a, `).

We cone over each ∆ ∈ T and define W = {(r1, q), . . . , (rm+1, q)}
where the (ri , q) are integral ray generators of cone(∆) at height q.

Let B(W; z) =: B(∆; z) and W′ = W ∪ {(a, `)} be the set of
generators from W together with (a, `) and set cone(∆′) to be the
cone generated by W′, wich associated box polynomial
B(W′; z) =: B(∆′; z).
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Decomposition from Boundary Triangulation

Set-up (continued):

A point v ∈ cone(∆) can be uniquely expressed as
v =

∑m+1
i=1 λi (ri , q) for λi ≥ 0.

Define I (v) := {i ∈ [m + 1] : λi ∈ Z} and I (v) := [m + 1] \ I (v).

For each v ∈ cone(P) we associate two faces ∆(v) and Ω(v) of T ,
where ∆(v) is chosen to be the minimal face of T such that

v ∈ cone(∆′(v)) and we define Ω(v) := conv
{

ri
q : i ∈ I (v))

}
⊆ ∆(v).
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Decomposition from Boundary Triangulation

Theorem: (Beck–Braun–Vindas-Meléndez 2020+) Consider a rational
d-polytope P that contains an interior point a

` , where a ∈ Zd and
` ∈ Z>0.

Fix a boundary triangulation T of P with denominator q. Then

h∗(P; z) =
1− zq

1− z`

∑
Ω∈T

(
B(Ω; z) + B(Ω′; z)

)
h(Ω; zq)

=
1 + z + · · ·+ zq−1

1 + z + · · ·+ z`−1

∑
Ω∈T

(
B(Ω; z) + B(Ω′; z)

)
h(Ω; zq).
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Decomposition from Boundary Triangulation

Let P =
[

1
3
, 2

3

]
.

Boundary triangulation with denominator 3

(a, `) = (2, 4)

simplices in T : empty face ∅ and vertices ∆1 = 1
3

and ∆2 = 2
3

W1 = {(1, 3)} and W2 = {(2, 3)}

For v ∈ cone(P) then the only options for ∆(v) to
be chosen as a minimal face of T such that
v ∈ cone ∆′(v) are again to consider ∅, ∆1, and
∆2. In this example, Ω(v) = ∆(v).

Ω ∈ T dim(Ω) B(Ω; z) B(Ω′; z) h(Ω, z3)

∆1 0 0 0 1
∆2 0 0 0 1
∅ -1 1 z2 1 + z3

h∗(P; z) =
1− z3

1− z4

(
1 + z3 + z2 + z5

)
= 1 + z2 + z4.
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Rational Stapledon Decomposition and Inequalities

Proposition: (Beck–Braun–Vindas-Meléndez 2020+) Let P be a rational
d-polytope with denominator q and Ehrhart series

Ehr(P; z) =
h∗(P; z)

(1− zq)d+1
.

Then deg h∗(P; z) = s if and only if (q(d + 1)− s)P is the smallest
integer dilate of P that contains an interior lattice point.
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Rational Stapledon Decomposition and Inequalities

Next, we turn our attention to the polynomial

h∗(P; z) :=
(

1 + z + · · ·+ z`−1
)
h∗(P; z) .

Theorem: (Beck–Braun–Vindas-Meléndez 2020+) Let P be a rational
d-polytope with denominator q, and let s := deg h∗(P; z). Then h∗(P; z)
has a unique decomposition

h∗(P; z) = a(z) + z`b(z) ,

where ` = q(d + 1)− s and a(z) and b(z) are polynomials with integer
coefficients satisfying a(z) = zq(d+1)−1a

(
1
z

)
and b(z) = zq(d+1)−1−`b

(
1
z

)
.

Moreover, the coefficients of a(z) and b(z) are nonnegative.
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Rational Stapledon Decomposition and Inequalities

Theorem: (Beck–Braun–Vindas-Meléndez 2020+) Let P be a rational
d-polytope with denominator q, let s := deg h∗(P; z) and
` := q(d + 1)− s.

The h∗-vector (h∗0, . . . , h
∗
q(d+1)−1) of P satisfies the

following inequalities:

h∗0 + · · ·+ h∗i+1 ≥ h∗q(d+1)−1 + · · ·+ h∗q(d+1)−1−i , i = 0, . . . ,

⌊
q(d + 1)− 1

2

⌋
− 1 , (1)

h∗s + · · ·+ h∗s−i ≥ h∗0 + · · ·+ h∗i , i = 0, . . . , q(d + 1)− 1 . (2)
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Rational Reflexive Polytopes

A lattice polytope is reflexive if its dual is also a lattice polytope.

Hibi (1992): A lattice polytope P is the translate of a reflexive
polytope if and only if Ehr

(
P; 1

z

)
= (−1)d+1z Ehr(P; z) as rational

functions, that is, h∗(z) is palindromic.

Fiset–Kaspryzk (2008): A rational polytope P whose dual is a lattice
polytope has a palindromic h∗-polynomial.

Theorem: (Beck–Braun–Vindas-Meléndez 2020+) Let P be a rational
polytope containing the origin. The dual of P is a lattice polytope if and
only if h∗(P; z) = h∗(z) = a(z), that is, b(z) = 0 in the
a/b-decomposition of h∗(P; z).
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The End

¡Gracias!

Andrés R. Vindas Meléndez (U. of Kentucky) Decompositions of h∗(P; z) 12-September-2020 29 / 29


