Decompositions of Ehrhart h^{*}-polynomials for rational polytopes

Andrés R. Vindas Meléndez

Department of Mathematics
University of Kentucky
AMS Sectional
12-September-2020

People

Matthias Beck (SF State \& FU Berlin)

Benjamin Braun
(Univ. of Kentucky)

This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. 1247392.

Main Characters: (Rational) Polytopes!

Main Characters: (Rational) Polytopes!

- Let P to be a rational d-polytope in \mathbb{R}^{d}, i.e., convex hull of finitely many points in \mathbb{Q}^{d}.

Main Characters: (Rational) Polytopes!

- Let P to be a rational d-polytope in \mathbb{R}^{d}, i.e., convex hull of finitely many points in \mathbb{Q}^{d}.
- For a positive integer t, let $L_{P}(t)$ denote the number of integer lattice points in $t P$.

Main Characters: (Rational) Polytopes!

- Let P to be a rational d-polytope in \mathbb{R}^{d}, i.e., convex hull of finitely many points in \mathbb{Q}^{d}.
- For a positive integer t, let $L_{P}(t)$ denote the number of integer lattice points in $t P$.

Theorem: (Ehrhart 1962) Given a rational polytope P, the counting function $L_{P}(t):=\left|t P \cap \mathbb{Z}^{d}\right|$ is a quasipolynomial of the form

$$
\operatorname{vol}(P) t^{d}+k_{d-1}(t) t^{d-1}+\cdots+k_{1}(t) t+k_{0}(t)
$$

where $k_{0}(t), k_{1}(t), \ldots, k_{d-1}(t)$ are periodic functions in t.

Main Characters: (Rational) Polytopes!

- Let P to be a rational d-polytope in \mathbb{R}^{d}, i.e., convex hull of finitely many points in \mathbb{Q}^{d}.
- For a positive integer t, let $L_{P}(t)$ denote the number of integer lattice points in $t P$.

Theorem: (Ehrhart 1962) Given a rational polytope P, the counting function $L_{P}(t):=\left|t P \cap \mathbb{Z}^{d}\right|$ is a quasipolynomial of the form

$$
\operatorname{vol}(P) t^{d}+k_{d-1}(t) t^{d-1}+\cdots+k_{1}(t) t+k_{0}(t)
$$

where $k_{0}(t), k_{1}(t), \ldots, k_{d-1}(t)$ are periodic functions in t. We call $L_{P}(t)$ the Ehrhart quasipolynomial of P, and each period of $k_{0}(t), k_{1}(t), \ldots, k_{d-1}(t)$ divides the denominator q of P, which is the least common multiple of all its vertex coordinate denominators.

Ehrhart Quasipolynomials

Ehrhart Quasipolynomials

A quasipolynomial $L_{P}(t)$ is a function $\mathbb{Z} \rightarrow \mathbb{R}$ of the form

$$
L_{P}(t)=k_{d}(t) t^{d}+\cdots+k_{1}(t) t+k_{0}(t)
$$

where k_{0}, \cdots, k_{d} are periodic functions in the integer variable t.

Ehrhart Quasipolynomials

A quasipolynomial $L_{P}(t)$ is a function $\mathbb{Z} \rightarrow \mathbb{R}$ of the form

$$
L_{P}(t)=k_{d}(t) t^{d}+\cdots+k_{1}(t) t+k_{0}(t)
$$

where k_{0}, \cdots, k_{d} are periodic functions in the integer variable t.

Alternatively, for a quasipolynomial, there exist a positive integer q and polynomials f_{0}, \ldots, f_{p-1}, such that

$$
L_{P}(t)= \begin{cases}f_{0}(t) & \text { if } t \equiv 0 \bmod q \\ f_{1}(t) & \text { if } t \equiv 1 \bmod q \\ \vdots & \\ f_{p-1}(t) & \text { if } t \equiv q-1 \bmod q\end{cases}
$$

Ehrhart Series

Ehrhart Series

The Ehrhart series is the rational generating function

$$
\operatorname{Ehr}(P ; z):=\sum_{t \geq 0} L_{P}(t) z^{t}=\frac{h^{*}(P ; z)}{\left(1-z^{q}\right)^{d+1}}
$$

where $h^{*}(P ; z)$ is a polynomial of degree less than $q(d+1)$ called the h^{*}-polynomial of P.

Ehrhart Theory of Rational Polytopes

Ehrhart Theory of Rational Polytopes

Let $P=\operatorname{conv}\left\{\left(\frac{-1}{2}, 1\right),\left(\frac{-1}{2},-1\right),\left(\frac{1}{2}, 1\right),\left(\frac{1}{2},-1\right)\right\}$.

Ehrhart Theory of Rational Polytopes

$$
\text { Let } P=\operatorname{conv}\left\{\left(\frac{-1}{2}, 1\right),\left(\frac{-1}{2},-1\right),\left(\frac{1}{2}, 1\right),\left(\frac{1}{2},-1\right)\right\} .
$$

Ehrhart Theory of Rational Polytopes

$$
\text { Let } P=\operatorname{conv}\left\{\left(\frac{-1}{2}, 1\right),\left(\frac{-1}{2},-1\right),\left(\frac{1}{2}, 1\right),\left(\frac{1}{2},-1\right)\right\} .
$$

Ehrhart Theory of Rational Polytopes

$$
\text { Let } P=\operatorname{conv}\left\{\left(\frac{-1}{2}, 1\right),\left(\frac{-1}{2},-1\right),\left(\frac{1}{2}, 1\right),\left(\frac{1}{2},-1\right)\right\} .
$$

Ehrhart Theory of Rational Polytopes

$$
\text { Let } P=\operatorname{conv}\left\{\left(\frac{-1}{2}, 1\right),\left(\frac{-1}{2},-1\right),\left(\frac{1}{2}, 1\right),\left(\frac{1}{2},-1\right)\right\} .
$$

$$
L_{P}(t)= \begin{cases}2 t^{2}+3 t+1 & \text { when } t \text { is even } \\ 2 t^{2}+t & \text { when } t \text { is odd }\end{cases}
$$

Ehrhart Theory of Rational Polytopes

$$
\text { Let } P=\operatorname{conv}\left\{\left(\frac{-1}{2}, 1\right),\left(\frac{-1}{2},-1\right),\left(\frac{1}{2}, 1\right),\left(\frac{1}{2},-1\right)\right\} .
$$

$$
L_{P}(t)= \begin{cases}2 t^{2}+3 t+1 & \text { when } t \text { is even } \\ 2 t^{2}+t & \text { when } t \text { is odd }\end{cases}
$$

$$
\begin{aligned}
\operatorname{Ehr}(P ; z) & =\sum_{t \geq 0} L_{P}(t) z^{t} \\
& =\sum_{\substack{t \geq 0 \\
t \text { even }}}\left(2 t^{2}+3 t+1\right) z^{t}+\sum_{\substack{t \geq 1 \\
t \text { odd }}}\left(2 t^{2}+t\right) z^{t} \\
& =\frac{3 z^{4}+12 z^{2}+1}{\left(1-z^{2}\right)^{3}}+\frac{z^{5}+12 z^{3}+3 z}{\left(1-z^{2}\right)^{3}} \\
& =\frac{z^{5}+3 z^{4}+12 z^{3}+12 z^{2}+3 z+1}{\left(1-z^{2}\right)^{3}}
\end{aligned}
$$

Ehrhart Theory of Rational Polytopes

Ehrhart Theory of Rational Polytopes

Theorem: (Ehrhart-Macdonald Reciprocity, 1971)
Let P be a rational polytope. Then $L_{P}(-t)=(-1)^{d} L_{P \circ}(t)$.
Similarly, $\operatorname{Ehr}\left(P ; \frac{1}{z}\right)=(-1)^{d+1} \operatorname{Ehr}\left(P^{\circ} ; z\right)$.

Ehrhart Theory of Rational Polytopes

Theorem: (Ehrhart-Macdonald Reciprocity, 1971)
Let P be a rational polytope. Then $L_{P}(-t)=(-1)^{d} L_{P \circ}(t)$.
Similarly, $\operatorname{Ehr}\left(P ; \frac{1}{z}\right)=(-1)^{d+1} \operatorname{Ehr}\left(P^{\circ} ; z\right)$.
Theorem:(Stanley's Non-negativity Result, 1980)
For a rational d-polytope with $\operatorname{Ehr}(P ; z)=\frac{h^{*}(P ; z)}{\left(1-z^{q}\right)^{d+1}}$, the coefficients of the h^{*}-polynomial are non-negative integers, i.e., $h_{j}^{*} \geq \mathbb{Z}_{\geq 0}$.

Ehrhart Theory of Rational Polytopes

Theorem: (Ehrhart-Macdonald Reciprocity, 1971)
Let P be a rational polytope. Then $L_{P}(-t)=(-1)^{d} L_{P \circ}(t)$.
Similarly, $\operatorname{Ehr}\left(P ; \frac{1}{z}\right)=(-1)^{d+1} \operatorname{Ehr}\left(P^{\circ} ; z\right)$.
Theorem:(Stanley's Non-negativity Result, 1980)
For a rational d-polytope with $\operatorname{Ehr}(P ; z)=\frac{h^{*}(P ; z)}{\left(1-z^{q}\right)^{d+1}}$, the coefficients of the h^{*}-polynomial are non-negative integers, i.e., $h_{j}^{*} \geq \mathbb{Z}_{\geq 0}$.

Theorem: (Stanley's Monotonicity Result, 1993) For $P \subseteq Q$, where $q P$ and $q Q$ are integral for some $q \in \mathbb{Z}_{>0}, h^{*}(P) \leq h^{*}(Q)$.

Goals

(1) Present a generalization of a decomposition of the h^{*}-polynomial for lattice polytopes due to Betke and McMullen (1985).
(i) Use this decomposition to provide another proof of Stanley's Monotonicity Result.
(2) Present a generalization of the h^{*}-polynomial for lattice polytopes due to Stapledon (2009).
(i) Application of this decomposition.

Set-Up and Notation

- A rational pointed simplicial cone is a set of the form

$$
K(\mathbf{W})=\left\{\sum_{i=1}^{n} \lambda_{i} \mathbf{w}_{i}: \lambda_{i} \geq 0\right\}
$$

where $\mathbf{W}:=\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{n}\right\}$ is a set of linearly independent vectors in \mathbb{Z}^{d}.

Set-Up and Notation

- A rational pointed simplicial cone is a set of the form

$$
K(\mathbf{W})=\left\{\sum_{i=1}^{n} \lambda_{i} \mathbf{w}_{i}: \lambda_{i} \geq 0\right\}
$$

where $\mathbf{W}:=\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{n}\right\}$ is a set of linearly independent vectors in \mathbb{Z}^{d}.

- Define the open parallelepiped associated with $K(\mathbf{W})$ as

$$
\operatorname{Box}(\mathbf{W}):=\left\{\sum_{i=1}^{n} \lambda_{i} \mathbf{w}_{i}: 0<\lambda_{i}<1\right\} .
$$

Set-Up and Notation

- A rational pointed simplicial cone is a set of the form

$$
K(\mathbf{W})=\left\{\sum_{i=1}^{n} \lambda_{i} \mathbf{w}_{i}: \lambda_{i} \geq 0\right\}
$$

where $\mathbf{W}:=\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{n}\right\}$ is a set of linearly independent vectors in \mathbb{Z}^{d}.

- Define the open parallelepiped associated with $K(\mathbf{W})$ as

$$
\operatorname{Box}(\mathbf{W}):=\left\{\sum_{i=1}^{n} \lambda_{i} \mathbf{w}_{i}: 0<\lambda_{i}<1\right\}
$$

- Let $u: \mathbb{R}^{d} \rightarrow \mathbb{R}$ denote the projection onto the last coordinate. We then define the box polynomial as

$$
B(\mathbf{W} ; z):=\sum_{\mathbf{v} \in \operatorname{Box}(\mathbf{W}) \cap \mathbb{Z}^{d}} z^{u(\mathbf{v})} .
$$

Set-Up and Notation

Set-Up and Notation

Example: Let $\mathbf{W}=\{(1,3),(2,3)\}$. Then

$$
\operatorname{Box}(W)=\left\{\lambda_{1}(1,3)+\lambda_{2}(2,3): 0<\lambda_{1}, \lambda_{2}<1\right\}
$$

Set-Up and Notation

Example: Let $\mathbf{W}=\{(1,3),(2,3)\}$. Then

$$
\operatorname{Box}(W)=\left\{\lambda_{1}(1,3)+\lambda_{2}(2,3): 0<\lambda_{1}, \lambda_{2}<1\right\}
$$

Set-Up and Notation

Example: Let $\mathbf{W}=\{(1,3),(2,3)\}$. Then

$$
\operatorname{Box}(W)=\left\{\lambda_{1}(1,3)+\lambda_{2}(2,3): 0<\lambda_{1}, \lambda_{2}<1\right\}
$$

Set-Up and Notation

Example: Let $\mathbf{W}=\{(1,3),(2,3)\}$. Then

$$
\operatorname{Box}(W)=\left\{\lambda_{1}(1,3)+\lambda_{2}(2,3): 0<\lambda_{1}, \lambda_{2}<1\right\}
$$

Thus,
$\operatorname{Box}(\mathbf{W}) \cap \mathbb{Z}^{2}=\{(1,2),(2,4)\}$ and its associated box polynomial is

$$
B(\mathbf{W} ; z)=z^{2}+z^{4}
$$

Set-Up and Notation

- Define the fundamental parallelepiped $\Pi(\mathbf{W})$ to be the half-open variant of $\operatorname{Box}(\mathbf{W})$, namely

$$
\Pi(\mathbf{W}):=\left\{\sum_{i=1}^{n} \lambda_{i} \mathbf{w}_{i}: 0 \leq \lambda_{i}<1\right\}
$$

Set-Up and Notation

- Define the fundamental parallelepiped $\Pi(\mathbf{W})$ to be the half-open variant of $\operatorname{Box}(\mathbf{W})$, namely

$$
\Pi(\mathbf{W}):=\left\{\sum_{i=1}^{n} \lambda_{i} \mathbf{w}_{i}: 0 \leq \lambda_{i}<1\right\}
$$

Set-Up and Notation

- For a rational polytope $P \subset \mathbb{R}^{d}$ with vertices $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n} \in \mathbb{Q}^{d}$, we lift the vertices into \mathbb{R}^{d+1} by appending a 1 as the last coordinate. Then the cone of P is

$$
\operatorname{cone}(P)=\left\{\sum_{i=1}^{n} \lambda_{i}\left(\mathbf{v}_{i}, 1\right): \lambda_{i} \geq 0\right\}
$$

Set-Up and Notation

- For a rational polytope $P \subset \mathbb{R}^{d}$ with vertices $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n} \in \mathbb{Q}^{d}$, we lift the vertices into \mathbb{R}^{d+1} by appending a 1 as the last coordinate. Then the cone of P is

$$
\operatorname{cone}(P)=\left\{\sum_{i=1}^{n} \lambda_{i}\left(\mathbf{v}_{i}, 1\right): \lambda_{i} \geq 0\right\}
$$

Set-Up and Notation

- A triangulation T of a d-polytope P is a subdivision of P into simplices (of all dimensions) that is closed under taking faces.

Set-Up and Notation

- A triangulation T of a d-polytope P is a subdivision of P into simplices (of all dimensions) that is closed under taking faces.

Set-Up and Notation

- A triangulation T of a d-polytope P is a subdivision of P into simplices (of all dimensions) that is closed under taking faces.

- If all vertices of T are rational points, define the denominator of T to be the least common multiple of all vertex coordinate denominators of the faces of T.

Set-Up and Notation

Set-Up and Notation

- For each $\Delta \in T$, we define the h-polynomial of Δ with respect to T as

$$
h_{T}(\Delta ; z):=(1-z)^{d-\operatorname{dim}(\Delta)} \sum_{\Delta \subseteq \Phi \in T}\left(\frac{z}{1-z}\right)^{\operatorname{dim}(\Phi)-\operatorname{dim}(\Delta)},
$$

where the sum is over all simplices $\Phi \in T$ containing Δ.

Set-Up and Notation

- For each $\Delta \in T$, we define the h-polynomial of Δ with respect to T as

$$
h_{T}(\Delta ; z):=(1-z)^{d-\operatorname{dim}(\Delta)} \sum_{\Delta \subseteq \Phi \in T}\left(\frac{z}{1-z}\right)^{\operatorname{dim}(\Phi)-\operatorname{dim}(\Delta)}
$$

where the sum is over all simplices $\Phi \in T$ containing Δ.

- For a simplex Δ with denominator p, let \mathbf{W} be the set of integral ray generators of cone (Δ) at height p. We define the h^{*}-polynomial of Δ as the generating function of the last coordinate of integer points in $\Pi(\mathbf{W}):=\Pi(\Delta)$, that is,

$$
h^{*}(\Delta ; z)=\sum_{\mathrm{v} \in \Pi(\Delta) \cap \mathbb{Z}^{d+1}} z^{u(\mathrm{v})}
$$

Decomposition à la Betke-McMullen

Decomposition à la Betke-McMullen

- Let P be a rational d-polytope and T be a triangulation with denominator q.

Decomposition à la Betke-McMullen

- Let P be a rational d-polytope and T be a triangulation with denominator q.
- For an m-simplex $\Delta \in T$, let $\mathbf{W}=\left\{\left(\mathbf{r}_{1}, q\right), \ldots,\left(\mathbf{r}_{m+1}, q\right)\right\}$, where the $\left(\mathbf{r}_{i}, q\right)$ are the integral ray generators for cone (Δ) at height q.

Decomposition à la Betke-McMullen

- Let P be a rational d-polytope and T be a triangulation with denominator q.
- For an m-simplex $\Delta \in T$, let $\mathbf{W}=\left\{\left(\mathbf{r}_{1}, q\right), \ldots,\left(\mathbf{r}_{m+1}, q\right)\right\}$, where the $\left(\mathbf{r}_{i}, q\right)$ are the integral ray generators for cone (Δ) at height q.
- Set $B(\mathbf{W} ; z)=: B(\Delta ; z)$ and $\operatorname{Box}(\mathbf{W})=: \operatorname{Box}(\Delta)$.

Decomposition à la Betke-McMullen

- Let P be a rational d-polytope and T be a triangulation with denominator q.
- For an m-simplex $\Delta \in T$, let $\mathbf{W}=\left\{\left(\mathbf{r}_{1}, q\right), \ldots,\left(\mathbf{r}_{m+1}, q\right)\right\}$, where the $\left(\mathbf{r}_{i}, q\right)$ are the integral ray generators for cone (Δ) at height q.
- Set $B(\mathbf{W} ; z)=: B(\Delta ; z)$ and $\operatorname{Box}(\mathbf{W})=: \operatorname{Box}(\Delta)$.

Lemma: Fix a triangulation T with denominator q of a rational d-polytope P and let $\Delta \in T$. Then $h^{*}(\Delta ; z)=\sum_{\Omega \subseteq \Delta} B(\Omega ; z)$.

Decomposition à la Betke-McMullen

Decomposition à la Betke-McMullen

Theorem: (Beck-Braun-Vindas-Meléndez 2020+) Fix a triangulation T with denominator q of a rational d-polytope P,

$$
\operatorname{Ehr}(P ; z)=\frac{\sum_{\Omega \in T} B(\Omega ; z) h\left(\Omega ; z^{q}\right)}{\left(1-z^{q}\right)^{d+1}}
$$

Decomposition à la Betke-McMullen

Theorem: (Beck-Braun-Vindas-Meléndez 2020+) Fix a triangulation T with denominator q of a rational d-polytope P,

$$
\operatorname{Ehr}(P ; z)=\frac{\sum_{\Omega \in T} B(\Omega ; z) h\left(\Omega ; z^{q}\right)}{\left(1-z^{q}\right)^{d+1}}
$$

Proof Sketch:

Decomposition à la Betke-McMullen

Theorem: (Beck-Braun-Vindas-Meléndez 2020+) Fix a triangulation T with denominator q of a rational d-polytope P,

$$
\operatorname{Ehr}(P ; z)=\frac{\sum_{\Omega \in T} B(\Omega ; z) h\left(\Omega ; z^{q}\right)}{\left(1-z^{q}\right)^{d+1}}
$$

Proof Sketch:

- Write P as the disjoint union of all open nonempty simplices in T $\left(\operatorname{Ehr}(P ; z)=1+\sum_{\Delta \in T \backslash \emptyset} \operatorname{Ehr}\left(\Delta^{\circ} ; z\right)\right)$.

Decomposition à la Betke-McMullen

Theorem: (Beck-Braun-Vindas-Meléndez 2020+) Fix a triangulation T with denominator q of a rational d-polytope P,

$$
\operatorname{Ehr}(P ; z)=\frac{\sum_{\Omega \in T} B(\Omega ; z) h\left(\Omega ; z^{q}\right)}{\left(1-z^{q}\right)^{d+1}}
$$

Proof Sketch:

- Write P as the disjoint union of all open nonempty simplices in T $\left(\operatorname{Ehr}(P ; z)=1+\sum_{\Delta \in T \backslash \emptyset} \operatorname{Ehr}\left(\Delta^{\circ} ; z\right)\right)$.
- Use Ehrhart-Macdonald reciprocity.

Decomposition à la Betke-McMullen

Theorem: (Beck-Braun-Vindas-Meléndez 2020+) Fix a triangulation T with denominator q of a rational d-polytope P,

$$
\operatorname{Ehr}(P ; z)=\frac{\sum_{\Omega \in T} B(\Omega ; z) h\left(\Omega ; z^{q}\right)}{\left(1-z^{q}\right)^{d+1}}
$$

Proof Sketch:

- Write P as the disjoint union of all open nonempty simplices in T $\left(\operatorname{Ehr}(P ; z)=1+\sum_{\Delta \in T \backslash \emptyset} \operatorname{Ehr}\left(\Delta^{\circ} ; z\right)\right)$.
- Use Ehrhart-Macdonald reciprocity.
- Apply previous lemma.

Decomposition à la Betke-McMullen

Theorem: (Beck-Braun-Vindas-Meléndez 2020+) Fix a triangulation T with denominator q of a rational d-polytope P,

$$
\operatorname{Ehr}(P ; z)=\frac{\sum_{\Omega \in T} B(\Omega ; z) h\left(\Omega ; z^{q}\right)}{\left(1-z^{q}\right)^{d+1}}
$$

Proof Sketch:

- Write P as the disjoint union of all open nonempty simplices in T $\left(\operatorname{Ehr}(P ; z)=1+\sum_{\Delta \in T \backslash \emptyset} \operatorname{Ehr}\left(\Delta^{\circ} ; z\right)\right)$.
- Use Ehrhart-Macdonald reciprocity.
- Apply previous lemma.
- Use the symmetry of box polynomials.

Decomposition à la Betke-McMullen

Theorem: (Beck-Braun-Vindas-Meléndez 2020+) Fix a triangulation T with denominator q of a rational d-polytope P,

$$
\operatorname{Ehr}(P ; z)=\frac{\sum_{\Omega \in T} B(\Omega ; z) h\left(\Omega ; z^{q}\right)}{\left(1-z^{q}\right)^{d+1}}
$$

Proof Sketch:

- Write P as the disjoint union of all open nonempty simplices in T $\left(\operatorname{Ehr}(P ; z)=1+\sum_{\Delta \in T \backslash \emptyset} \operatorname{Ehr}\left(\Delta^{\circ} ; z\right)\right)$.
- Use Ehrhart-Macdonald reciprocity.
- Apply previous lemma.
- Use the symmetry of box polynomials.
- Use the definition of the h-polynomial.

Rational h^{*}-Monotonicity

Theorem: (Stanley 1993) Suppose $P \subseteq Q$ are rational polytopes with $q P$ and $q Q$ integral (for minimal possible $q \in \mathbb{Z}_{>0}$). Define the h^{*}-polynomials via
$\operatorname{Ehr}(P ; z)=\frac{h^{*}(P ; z)}{\left(1-z^{q}\right)^{\operatorname{dim}(P)+1}} \quad$ and $\quad \operatorname{Ehr}(Q ; z)=\frac{h^{*}(Q ; z)}{\left(1-z^{q}\right)^{\operatorname{dim}(Q)+1}}$.
Then $h_{i}^{*}(P ; z) \leq h_{i}^{*}(Q ; z)$ coefficient-wise.

Rational h^{*}-Monotonicity

Rational h^{*}-Monotonicity

Lemma: (Beck-Braun-Vindas-Meléndez 2020+) Suppose P is a polytope and T a triangulation of P.

Rational h^{*}-Monotonicity

Lemma: (Beck-Braun-Vindas-Meléndez 2020+) Suppose P is a polytope and T a triangulation of P. Let $P \subseteq Q$ be a polytope and T^{\prime} be a triangulation of Q such that T^{\prime} restricted to P is T.

Rational h^{*}-Monotonicity

Lemma: (Beck-Braun-Vindas-Meléndez 2020+) Suppose P is a polytope and T a triangulation of P. Let $P \subseteq Q$ be a polytope and T^{\prime} be a triangulation of Q such that T^{\prime} restricted to P is T. Further, if $\operatorname{dim}(P)<\operatorname{dim}(Q)$, assume that there exists a set of affinely independent vertices $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ of Q outside the affine span of P such that

Rational h^{*}-Monotonicity

Lemma: (Beck-Braun-Vindas-Meléndez 2020+) Suppose P is a polytope and T a triangulation of P. Let $P \subseteq Q$ be a polytope and T^{\prime} be a triangulation of Q such that T^{\prime} restricted to P is T. Further, if $\operatorname{dim}(P)<\operatorname{dim}(Q)$, assume that there exists a set of affinely independent vertices $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ of Q outside the affine span of P such that

1 the join $T * \operatorname{conv}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ is a subcomplex of T^{\prime} and

Rational h^{*}-Monotonicity

Lemma: (Beck-Braun-Vindas-Meléndez 2020+) Suppose P is a polytope and T a triangulation of P. Let $P \subseteq Q$ be a polytope and T^{\prime} be a triangulation of Q such that T^{\prime} restricted to P is T. Further, if $\operatorname{dim}(P)<\operatorname{dim}(Q)$, assume that there exists a set of affinely independent vertices $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ of Q outside the affine span of P such that

1 the join $T * \operatorname{conv}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ is a subcomplex of T^{\prime} and
$2 \operatorname{dim}\left(P * \operatorname{conv}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}\right)=\operatorname{dim}(Q)$.

Rational h^{*}-Monotonicity

Lemma: (Beck-Braun-Vindas-Meléndez 2020+) Suppose P is a polytope and T a triangulation of P. Let $P \subseteq Q$ be a polytope and T^{\prime} be a triangulation of Q such that T^{\prime} restricted to P is T. Further, if $\operatorname{dim}(P)<\operatorname{dim}(Q)$, assume that there exists a set of affinely independent vertices $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ of Q outside the affine span of P such that

1 the join $T * \operatorname{conv}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ is a subcomplex of T^{\prime} and
$2 \operatorname{dim}\left(P * \operatorname{conv}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}\right)=\operatorname{dim}(Q)$.
For every face $\Omega \in T$, the coefficient-wise inequality $h_{T}(\Omega ; z) \leq h_{T^{\prime}}(\Omega, z)$ holds.

Rational h^{*}-Monotonicity

Rational h^{*}-Monotonicity

Theorem: (Stanley 1993) Suppose $P \subseteq Q$ are rational polytopes with $q P$ and $q Q$ integral. Then $h_{i}^{*}(P ; z) \leq h_{i}^{*}(Q ; z)$ coefficient-wise.

Rational h^{*}-Monotonicity

Theorem: (Stanley 1993) Suppose $P \subseteq Q$ are rational polytopes with $q P$ and $q Q$ integral. Then $h_{i}^{*}(P ; z) \leq h_{i}^{*}(Q ; z)$ coefficient-wise.

Proof Sketch:

Rational h^{*}-Monotonicity

Theorem: (Stanley 1993) Suppose $P \subseteq Q$ are rational polytopes with $q P$ and $q Q$ integral. Then $h_{i}^{*}(P ; z) \leq h_{i}^{*}(Q ; z)$ coefficient-wise.

Proof Sketch:

- Let P contained in Q and let T be a triangulation of P and T^{\prime} a triangulation of Q such that $\left.T^{\prime}\right|_{P}$ is T, where if $\operatorname{dim}(P)<\operatorname{dim}(Q)$ the triangulation T^{\prime} satisfies the conditions from the previous lemma.

Rational h^{*}-Monotonicity

Theorem: (Stanley 1993) Suppose $P \subseteq Q$ are rational polytopes with $q P$ and $q Q$ integral. Then $h_{i}^{*}(P ; z) \leq h_{i}^{*}(Q ; z)$ coefficient-wise.

Proof Sketch:

- Let P contained in Q and let T be a triangulation of P and T^{\prime} a triangulation of Q such that $\left.T^{\prime}\right|_{P}$ is T, where if $\operatorname{dim}(P)<\operatorname{dim}(Q)$ the triangulation T^{\prime} satisfies the conditions from the previous lemma.
- By rational Betke-McMullen, $h^{*}(P ; z)=\sum_{\Omega \in T} B(\Omega ; z) h\left(\Omega ; z^{q}\right)$.

Rational h^{*}-Monotonicity

Theorem: (Stanley 1993) Suppose $P \subseteq Q$ are rational polytopes with $q P$ and $q Q$ integral. Then $h_{i}^{*}(P ; z) \leq h_{i}^{*}(Q ; z)$ coefficient-wise.

Proof Sketch:

- Let P contained in Q and let T be a triangulation of P and T^{\prime} a triangulation of Q such that $\left.T^{\prime}\right|_{P}$ is T, where if $\operatorname{dim}(P)<\operatorname{dim}(Q)$ the triangulation T^{\prime} satisfies the conditions from the previous lemma.
- By rational Betke-McMullen, $h^{*}(P ; z)=\sum_{\Omega \in T} B(\Omega ; z) h\left(\Omega ; z^{q}\right)$.
- Since $P \subseteq Q$,

$$
h^{*}(Q ; z)=\sum_{\Omega \in T} B(\Omega ; z) h_{T^{\prime} \mid p}\left(\Omega ; z^{q}\right)+\sum_{\Omega \in T^{\prime} \backslash T} B(\Omega ; z) h_{T^{\prime}}\left(\Omega ; z^{q}\right) .
$$

Rational h^{*}-Monotonicity

Theorem: (Stanley 1993) Suppose $P \subseteq Q$ are rational polytopes with $q P$ and $q Q$ integral. Then $h_{i}^{*}(P ; z) \leq h_{i}^{*}(Q ; z)$ coefficient-wise.

Proof Sketch:

- Let P contained in Q and let T be a triangulation of P and T^{\prime} a triangulation of Q such that $\left.T^{\prime}\right|_{P}$ is T, where if $\operatorname{dim}(P)<\operatorname{dim}(Q)$ the triangulation T^{\prime} satisfies the conditions from the previous lemma.
- By rational Betke-McMullen, $h^{*}(P ; z)=\sum_{\Omega \in T} B(\Omega ; z) h\left(\Omega ; z^{q}\right)$.
- Since $P \subseteq Q$,

$$
h^{*}(Q ; z)=\sum_{\Omega \in T} B(\Omega ; z) h_{T^{\prime} \mid p}\left(\Omega ; z^{q}\right)+\sum_{\Omega \in T^{\prime} \backslash T} B(\Omega ; z) h_{T^{\prime}}\left(\Omega ; z^{q}\right)
$$

- By the lemma, the coefficients of $\sum_{\Omega \in T} B(\Omega ; z) h_{\left.T^{\prime}\right|_{p}}\left(\Omega ; z^{q}\right)$ dominate the coefficients of $\sum_{\Omega \in T} B(\Omega ; z) h_{T^{\prime}}\left(\Omega ; z^{q}\right)$.

Rational h^{*}-Monotonicity

Theorem: (Stanley 1993) Suppose $P \subseteq Q$ are rational polytopes with $q P$ and $q Q$ integral. Then $h_{i}^{*}(P ; z) \leq h_{i}^{*}(Q ; z)$ coefficient-wise.

Proof Sketch:

- Let P contained in Q and let T be a triangulation of P and T^{\prime} a triangulation of Q such that $\left.T^{\prime}\right|_{P}$ is T, where if $\operatorname{dim}(P)<\operatorname{dim}(Q)$ the triangulation T^{\prime} satisfies the conditions from the previous lemma.
- By rational Betke-McMullen, $h^{*}(P ; z)=\sum_{\Omega \in T} B(\Omega ; z) h\left(\Omega ; z^{q}\right)$.
- Since $P \subseteq Q$,

$$
h^{*}(Q ; z)=\sum_{\Omega \in T} B(\Omega ; z) h_{T^{\prime} \mid p}\left(\Omega ; z^{q}\right)+\sum_{\Omega \in T^{\prime} \backslash T} B(\Omega ; z) h_{T^{\prime}}\left(\Omega ; z^{q}\right)
$$

- By the lemma, the coefficients of $\sum_{\Omega \in T} B(\Omega ; z) h_{\left.T^{\prime}\right|_{p}}\left(\Omega ; z^{q}\right)$ dominate the coefficients of $\sum_{\Omega \in T} B(\Omega ; z) h_{T^{\prime}}\left(\Omega ; z^{q}\right)$.

$$
\text { - } \begin{aligned}
& \sum_{\Omega \in T} B(\Omega ; z) h\left(\Omega ; z^{q}\right) \leq \sum_{\Omega \in T} B(\Omega ; z) h_{T^{\prime} \mid p}\left(\Omega ; z^{q}\right) \leq \\
& \sum_{\Omega \in T} B(\Omega ; z) h_{\left.T^{\prime}\right|_{p}}\left(\Omega ; z^{q}\right)+\sum_{\Omega \in T^{\prime} \backslash T} B(\Omega ; z) h_{T^{\prime}}\left(\Omega ; z^{q}\right) .
\end{aligned}
$$

Decomposition from Boundary Triangulation

Decomposition from Boundary Triangulation

Set-up:

- Fix a boundary triangulation T with denominator q of a rational d-polytope P.

Decomposition from Boundary Triangulation

Set-up:

- Fix a boundary triangulation T with denominator q of a rational d-polytope P.
- Take $\ell \in \mathbb{Z}_{>0}$, such that ℓP contains a lattice point \mathbf{a} in its interior. Thus $(\mathbf{a}, \ell) \in \operatorname{cone}(P)^{\circ} \cap Z^{d+1}$ is a lattice point in the interior of the cone of P at height ℓ and $\operatorname{cone}((\mathbf{a}, \ell))$ is the ray through the point (a, ℓ).

Decomposition from Boundary Triangulation

Set-up:

- Fix a boundary triangulation T with denominator q of a rational d-polytope P.
- Take $\ell \in \mathbb{Z}_{>0}$, such that ℓP contains a lattice point \mathbf{a} in its interior. Thus $(\mathbf{a}, \ell) \in \operatorname{cone}(P)^{\circ} \cap Z^{d+1}$ is a lattice point in the interior of the cone of P at height ℓ and $\operatorname{cone}((\mathbf{a}, \ell))$ is the ray through the point (a, ℓ).
- We cone over each $\Delta \in T$ and define $\mathbf{W}=\left\{\left(\mathbf{r}_{1}, q\right), \ldots,\left(\mathbf{r}_{m+1}, q\right)\right\}$ where the $\left(\mathbf{r}_{i}, q\right)$ are integral ray generators of cone (Δ) at height q.

Decomposition from Boundary Triangulation

Set-up:

- Fix a boundary triangulation T with denominator q of a rational d-polytope P.
- Take $\ell \in \mathbb{Z}_{>0}$, such that ℓP contains a lattice point \mathbf{a} in its interior. Thus $(\mathbf{a}, \ell) \in \operatorname{cone}(P)^{\circ} \cap Z^{d+1}$ is a lattice point in the interior of the cone of P at height ℓ and $\operatorname{cone}((\mathbf{a}, \ell))$ is the ray through the point (a, ℓ).
- We cone over each $\Delta \in T$ and define $\mathbf{W}=\left\{\left(\mathbf{r}_{1}, q\right), \ldots,\left(\mathbf{r}_{m+1}, q\right)\right\}$ where the $\left(\mathbf{r}_{i}, q\right)$ are integral ray generators of cone (Δ) at height q.
- Let $B(\mathbf{W} ; z)=: B(\Delta ; z)$ and $\mathbf{W}^{\prime}=\mathbf{W} \cup\{(\mathbf{a}, \ell)\}$ be the set of generators from \mathbf{W} together with (\mathbf{a}, ℓ) and set cone $\left(\Delta^{\prime}\right)$ to be the cone generated by \mathbf{W}^{\prime}, wich associated box polynomial $B\left(\mathbf{W}^{\prime} ; z\right)=: B\left(\Delta^{\prime} ; z\right)$.

Decomposition from Boundary Triangulation

Decomposition from Boundary Triangulation

Set-up (continued):

Decomposition from Boundary Triangulation

Set-up (continued):

- A point $\mathbf{v} \in \operatorname{cone}(\Delta)$ can be uniquely expressed as

$$
\mathbf{v}=\sum_{i=1}^{m+1} \lambda_{i}\left(\mathbf{r}_{i}, q\right) \text { for } \lambda_{i} \geq 0
$$

Decomposition from Boundary Triangulation

Set-up (continued):

- A point $\mathbf{v} \in \operatorname{cone}(\Delta)$ can be uniquely expressed as
$\mathbf{v}=\sum_{i=1}^{m+1} \lambda_{i}\left(\mathbf{r}_{i}, q\right)$ for $\lambda_{i} \geq 0$.
- Define $I(\mathbf{v}):=\left\{i \in[m+1]: \lambda_{i} \in \mathbb{Z}\right\}$ and $\overline{I(v)}:=[m+1] \backslash I(\mathbf{v})$.

Decomposition from Boundary Triangulation

Set-up (continued):

- A point $\mathbf{v} \in \operatorname{cone}(\Delta)$ can be uniquely expressed as
$\mathbf{v}=\sum_{i=1}^{m+1} \lambda_{i}\left(\mathbf{r}_{i}, q\right)$ for $\lambda_{i} \geq 0$.
- Define $I(\mathbf{v}):=\left\{i \in[m+1]: \lambda_{i} \in \mathbb{Z}\right\}$ and $\overline{I(v)}:=[m+1] \backslash I(\mathbf{v})$.
- For each $\mathbf{v} \in \operatorname{cone}(P)$ we associate two faces $\Delta(\mathbf{v})$ and $\Omega(\mathbf{v})$ of T, where $\Delta(\mathbf{v})$ is chosen to be the minimal face of T such that $\mathbf{v} \in \operatorname{cone}\left(\Delta^{\prime}(\mathbf{v})\right)$ and we define $\Omega(\mathbf{v}):=\operatorname{conv}\left\{\frac{\mathrm{r}_{i}}{q}: i \in \overline{I(\mathbf{v}))}\right\} \subseteq \Delta(\mathbf{v})$.

Decomposition from Boundary Triangulation

Theorem: (Beck-Braun-Vindas-Meléndez 2020+) Consider a rational d-polytope P that contains an interior point $\frac{\mathbf{a}}{\ell}$, where $\mathbf{a} \in \mathbb{Z}^{d}$ and $\ell \in \mathbb{Z}_{>0}$.

Decomposition from Boundary Triangulation

Theorem: (Beck-Braun-Vindas-Meléndez 2020+) Consider a rational d-polytope P that contains an interior point $\frac{\mathbf{a}}{\ell}$, where $\mathbf{a} \in \mathbb{Z}^{d}$ and $\ell \in \mathbb{Z}_{>0}$. Fix a boundary triangulation T of P with denominator q.

Decomposition from Boundary Triangulation

Theorem: (Beck-Braun-Vindas-Meléndez 2020+) Consider a rational d-polytope P that contains an interior point $\frac{\mathbf{a}}{\ell}$, where $\mathbf{a} \in \mathbb{Z}^{d}$ and $\ell \in \mathbb{Z}_{>0}$. Fix a boundary triangulation T of P with denominator q. Then

$$
\begin{aligned}
h^{*}(P ; z) & =\frac{1-z^{q}}{1-z^{\ell}} \sum_{\Omega \in T}\left(B(\Omega ; z)+B\left(\Omega^{\prime} ; z\right)\right) h\left(\Omega ; z^{q}\right) \\
& =\frac{1+z+\cdots+z^{q-1}}{1+z+\cdots+z^{\ell-1}} \sum_{\Omega \in T}\left(B(\Omega ; z)+B\left(\Omega^{\prime} ; z\right)\right) h\left(\Omega ; z^{q}\right) .
\end{aligned}
$$

Decomposition from Boundary Triangulation

Decomposition from Boundary Triangulation

$$
\text { Let } P=\left[\frac{1}{3}, \frac{2}{3}\right] \text {. }
$$

Decomposition from Boundary Triangulation

Let $P=\left[\frac{1}{3}, \frac{2}{3}\right]$.

- Boundary triangulation with denominator 3

Decomposition from Boundary Triangulation

Let $P=\left[\frac{1}{3}, \frac{2}{3}\right]$.

- Boundary triangulation with denominator 3
- $(\mathbf{a}, \ell)=(2,4)$

Decomposition from Boundary Triangulation

Let $P=\left[\frac{1}{3}, \frac{2}{3}\right]$.

- Boundary triangulation with denominator 3
- $(\mathbf{a}, \ell)=(2,4)$
- simplices in T : empty face \emptyset and vertices $\Delta_{1}=\frac{1}{3}$ and $\Delta_{2}=\frac{2}{3}$

Decomposition from Boundary Triangulation

Let $P=\left[\frac{1}{3}, \frac{2}{3}\right]$.

- Boundary triangulation with denominator 3
- $(\mathbf{a}, \ell)=(2,4)$
- simplices in T : empty face \emptyset and vertices $\Delta_{1}=\frac{1}{3}$ and $\Delta_{2}=\frac{2}{3}$
- $\mathbf{W}_{1}=\{(1,3)\}$ and $\mathbf{W}_{2}=\{(2,3)\}$

Decomposition from Boundary Triangulation

Let $P=\left[\frac{1}{3}, \frac{2}{3}\right]$.

- Boundary triangulation with denominator 3
- $(\mathbf{a}, \ell)=(2,4)$
- simplices in T : empty face \emptyset and vertices $\Delta_{1}=\frac{1}{3}$ and $\Delta_{2}=\frac{2}{3}$
- $\mathbf{W}_{1}=\{(1,3)\}$ and $\mathbf{W}_{2}=\{(2,3)\}$
- For $\mathbf{v} \in$ cone (P) then the only options for $\Delta(\mathbf{v})$ to be chosen as a minimal face of T such that $\mathbf{v} \in$ cone $\Delta^{\prime}(\mathbf{v})$ are again to consider \emptyset, Δ_{1}, and Δ_{2}. In this example, $\Omega(\mathbf{v})=\Delta(\mathbf{v})$.

Decomposition from Boundary Triangulation

Let $P=\left[\frac{1}{3}, \frac{2}{3}\right]$.

- Boundary triangulation with denominator 3
- $(\mathbf{a}, \ell)=(2,4)$
- simplices in T : empty face \emptyset and vertices $\Delta_{1}=\frac{1}{3}$ and $\Delta_{2}=\frac{2}{3}$
- $\mathbf{W}_{1}=\{(1,3)\}$ and $\mathbf{W}_{2}=\{(2,3)\}$
- For $\mathbf{v} \in \operatorname{cone}(P)$ then the only options for $\Delta(\mathbf{v})$ to be chosen as a minimal face of T such that $\mathbf{v} \in$ cone $\Delta^{\prime}(\mathbf{v})$ are again to consider \emptyset, Δ_{1}, and Δ_{2}. In this example, $\Omega(\mathbf{v})=\Delta(\mathbf{v})$.

$\Omega \in T$	$\operatorname{dim}(\Omega)$	$B(\Omega ; z)$	$B\left(\Omega^{\prime} ; z\right)$	$h\left(\Omega, z^{3}\right)$
Δ_{1}	0	0	0	1
Δ_{2}	0	0	0	1
\emptyset	-1	1	z^{2}	$1+z^{3}$

Decomposition from Boundary Triangulation

Let $P=\left[\frac{1}{3}, \frac{2}{3}\right]$.

- Boundary triangulation with denominator 3
- $(\mathbf{a}, \ell)=(2,4)$
- simplices in T : empty face \emptyset and vertices $\Delta_{1}=\frac{1}{3}$ and $\Delta_{2}=\frac{2}{3}$
- $\mathbf{W}_{1}=\{(1,3)\}$ and $\mathbf{W}_{2}=\{(2,3)\}$
- For $\mathbf{v} \in \operatorname{cone}(P)$ then the only options for $\Delta(\mathbf{v})$ to be chosen as a minimal face of T such that $\mathbf{v} \in$ cone $\Delta^{\prime}(\mathbf{v})$ are again to consider \emptyset, Δ_{1}, and Δ_{2}. In this example, $\Omega(v)=\Delta(v)$.

$\Omega \in T$	$\operatorname{dim}(\Omega)$	$B(\Omega ; z)$	$B\left(\Omega^{\prime} ; z\right)$	$h\left(\Omega, z^{3}\right)$
Δ_{1}	0	0	0	1
Δ_{2}	0	0	0	1
\emptyset	-1	1	z^{2}	$1+z^{3}$

$$
\begin{aligned}
h^{*}(P ; z) & =\frac{1-z^{3}}{1-z^{4}}\left(1+z^{3}+z^{2}+z^{5}\right) \\
& =1+z^{2}+z^{4}
\end{aligned}
$$

Rational Stapledon Decomposition and Inequalities

Proposition: (Beck-Braun-Vindas-Meléndez 2020+) Let P be a rational d-polytope with denominator q and Ehrhart series

$$
\operatorname{Ehr}(P ; z)=\frac{h^{*}(P ; z)}{\left(1-z^{q}\right)^{d+1}}
$$

Then $\operatorname{deg} h^{*}(P ; z)=s$ if and only if $(q(d+1)-s) P$ is the smallest integer dilate of P that contains an interior lattice point.

Rational Stapledon Decomposition and Inequalities

Rational Stapledon Decomposition and Inequalities

Next, we turn our attention to the polynomial

$$
\overline{h^{*}}(P ; z):=\left(1+z+\cdots+z^{\ell-1}\right) h^{*}(P ; z) .
$$

Rational Stapledon Decomposition and Inequalities

Next, we turn our attention to the polynomial

$$
\overline{h^{*}}(P ; z):=\left(1+z+\cdots+z^{\ell-1}\right) h^{*}(P ; z)
$$

Theorem: (Beck-Braun-Vindas-Meléndez 2020+) Let P be a rational d-polytope with denominator q, and let $s:=\operatorname{deg} h^{*}(P ; z)$.

Rational Stapledon Decomposition and Inequalities

Next, we turn our attention to the polynomial

$$
\overline{h^{*}}(P ; z):=\left(1+z+\cdots+z^{\ell-1}\right) h^{*}(P ; z)
$$

Theorem: (Beck-Braun-Vindas-Meléndez 2020+) Let P be a rational d-polytope with denominator q, and let $s:=\operatorname{deg} h^{*}(P ; z)$. Then $\overline{h^{*}}(P ; z)$ has a unique decomposition

$$
\overline{h^{*}}(P ; z)=a(z)+z^{\ell} b(z)
$$

where $\ell=q(d+1)-s$ and $a(z)$ and $b(z)$ are polynomials with integer coefficients satisfying $a(z)=z^{q(d+1)-1} a\left(\frac{1}{z}\right)$ and $b(z)=z^{q(d+1)-1-\ell} b\left(\frac{1}{z}\right)$.

Rational Stapledon Decomposition and Inequalities

Next, we turn our attention to the polynomial

$$
\overline{h^{*}}(P ; z):=\left(1+z+\cdots+z^{\ell-1}\right) h^{*}(P ; z)
$$

Theorem: (Beck-Braun-Vindas-Meléndez 2020+) Let P be a rational d-polytope with denominator q, and let $s:=\operatorname{deg} h^{*}(P ; z)$. Then $\overline{h^{*}}(P ; z)$ has a unique decomposition

$$
\overline{h^{*}}(P ; z)=a(z)+z^{\ell} b(z)
$$

where $\ell=q(d+1)-s$ and $a(z)$ and $b(z)$ are polynomials with integer coefficients satisfying $a(z)=z^{q(d+1)-1} a\left(\frac{1}{z}\right)$ and $b(z)=z^{q(d+1)-1-\ell} b\left(\frac{1}{z}\right)$. Moreover, the coefficients of $a(z)$ and $b(z)$ are nonnegative.

Rational Stapledon Decomposition and Inequalities

Theorem: (Beck-Braun-Vindas-Meléndez 2020+) Let P be a rational d-polytope with denominator q, let $s:=\operatorname{deg} h^{*}(P ; z)$ and $\ell:=q(d+1)-s$.

Rational Stapledon Decomposition and Inequalities

Theorem: (Beck-Braun-Vindas-Meléndez 2020+) Let P be a rational d-polytope with denominator q, let $s:=\operatorname{deg} h^{*}(P ; z)$ and $\ell:=q(d+1)-s$. The h^{*}-vector $\left(h_{0}^{*}, \ldots, h_{q(d+1)-1}^{*}\right)$ of P satisfies the following inequalities:

$$
\begin{align*}
h_{0}^{*}+\cdots+h_{i+1}^{*} \geq h_{q(d+1)-1}^{*}+\cdots+h_{q(d+1)-1-i}^{*}, & & i=0, \ldots,\left\lfloor\frac{q(d+1)-1}{2}\right\rfloor-1, \tag{1}\\
h_{s}^{*}+\cdots+h_{s-i}^{*} \geq h_{0}^{*}+\cdots+h_{i}^{*}, & & i=0, \ldots, q(d+1)-1 . \tag{2}
\end{align*}
$$

Rational Reflexive Polytopes

Rational Reflexive Polytopes

- A lattice polytope is reflexive if its dual is also a lattice polytope.

Rational Reflexive Polytopes

- A lattice polytope is reflexive if its dual is also a lattice polytope.
- Hibi (1992): A lattice polytope P is the translate of a reflexive polytope if and only if $\operatorname{Ehr}\left(P ; \frac{1}{z}\right)=(-1)^{d+1} z \operatorname{Ehr}(P ; z)$ as rational functions, that is, $h^{*}(z)$ is palindromic.

Rational Reflexive Polytopes

- A lattice polytope is reflexive if its dual is also a lattice polytope.
- Hibi (1992): A lattice polytope P is the translate of a reflexive polytope if and only if $\operatorname{Ehr}\left(P ; \frac{1}{z}\right)=(-1)^{d+1} z \operatorname{Ehr}(P ; z)$ as rational functions, that is, $h^{*}(z)$ is palindromic.
- Fiset-Kaspryzk (2008): A rational polytope P whose dual is a lattice polytope has a palindromic h^{*}-polynomial.

Rational Reflexive Polytopes

- A lattice polytope is reflexive if its dual is also a lattice polytope.
- Hibi (1992): A lattice polytope P is the translate of a reflexive polytope if and only if $\operatorname{Ehr}\left(P ; \frac{1}{z}\right)=(-1)^{d+1} z \operatorname{Ehr}(P ; z)$ as rational functions, that is, $h^{*}(z)$ is palindromic.
- Fiset-Kaspryzk (2008): A rational polytope P whose dual is a lattice polytope has a palindromic h^{*}-polynomial.

Theorem: (Beck-Braun-Vindas-Meléndez 2020+) Let P be a rational polytope containing the origin. The dual of P is a lattice polytope if and only if $\overline{h^{*}}(P ; z)=h^{*}(z)=a(z)$, that is, $b(z)=0$ in the a / b-decomposition of $\overline{h^{*}}(P ; z)$.

The End

¡Gracias!

