Lattice polytopes from Schur and symmetric Grothendieck polynomials

Margaret Bayer
University of Kansas
Su Ji Hong
University of Nebraska -
Lincoln
McCabe Olsen
Rose Hulman Institute of
Technology
Julianne Vega*
Kennesaw State University
Bennet Geockner
University of Washington
Tyrrell McAllister
University of Wyoming
> Casey Pickney
Colorado State University
Martha Yip
University of Kentucky

Acknowledgements: Support for the 2019 GRWC was provided by NSF-DMS grants 1604458 and 1923238, NSA grant H98230-18-1-0017, Simons Foundation Collaboration grants \#426971 (to M. Ferrara) and \#315347 (to J. Martin) and awards from the Combinatorics Foundation and the Elsevier Mathematical Sciences Sponsorship Fund.

Let $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}\right)$ be a partition with $\lambda_{1} \geq \cdots \geq \lambda_{m} \geq 0$. A Semistandard Young tableau is a filling of an arrangement of boxes with λ_{i} boxes in the i-th row, such that the numbers are weakly increasing along the row and strictly increasing along the column.

Example

Consider the partition $\lambda=(2,1,0) \vdash 3$ and let $m=3$. The semistandard Young tableaux are

Newton Polytopes

Definition (Schur polynomial)

Let $\mathbf{x}=\left(x_{1}, \ldots, x_{m}\right)$. The Schur polynomial in m variables indexed by $\lambda \vdash n$ is

$$
s_{\lambda}(\mathbf{x})=\sum_{T \in \operatorname{SSY}^{[m]}(\lambda)} \mathbf{x}^{T},
$$

where $\mathbf{x}^{T}=x_{1}^{d_{1}(T)} \cdots x_{m}^{d_{m}(T)}$ such that $d_{i}(T)$ is the number of times i appears in T.

Newton Polytopes

Example

For $\lambda=(2,1,0) \vdash 3$. Let $m=3$ and $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right)$.

The associated Schur polynomial is

$$
s_{(2,1,0)}(\mathbf{x})=x_{1}^{2} x_{2}+x_{1}^{2} x_{3}+x_{1} x_{2}^{2}+x_{1} x_{3}^{2}+x_{2}^{2} x_{3}+x_{2} x_{3}^{2}+2 x_{1} x_{2} x_{3} .
$$

The Newton polytope $\operatorname{Newt}\left(s_{(2,1,0)}(\mathbf{x})\right)$ is the convex hull of the points $(2,1,0),(2,0,1),(1,2,0),(1,0,2),(0,2,1),(0,1,2),(1,1,1)$.

Given a polynomial $f=\sum_{\alpha} c_{\alpha} \mathbf{x}^{\alpha} \in \mathbb{C}\left[x_{1}, x_{2}, \ldots, x_{m}\right]$ where $\alpha \in \mathbb{Z}_{\geq 0}^{m}$, the Newton polytope $\operatorname{Newt}(f) \operatorname{conv}\left\{\alpha \mid c_{\alpha} \neq 0\right\}$ is the convex hull of the exponent vectors of f.

Newton Polytopes

Observations:

(1) $\operatorname{Newt}\left(s_{\lambda}\right)$ can be realized as λ-permutohedron.
(2) The Newton polytope of a Schur polynomial is a Saturated Newton polytope- every lattice point $\alpha \in \operatorname{Newt}(f) \cap \mathbb{Z}^{m}$ appears as an exponent vector of f. [3, Monical, Tokcan, Yong].

Integer Decomposition Property

Given a positive integer t, let $t \mathcal{P}\{t \mathbf{x} \mid \mathbf{x} \in \mathcal{P}\}$ be the t-th dilate of \mathcal{P}.

$\operatorname{Newt}\left(s_{(2,1,0)}\right)$ and the 3 rd dilate of $\operatorname{Newt}\left(s_{(2,1,0)}\right)$.

Integer Decomposition Property

Given a positive integer t, let $t \mathcal{P}\{t \mathbf{x} \mid \mathbf{x} \in \mathcal{P}\}$ be the t-th dilate of \mathcal{P}.

$\operatorname{Newt}\left(s_{(2,1,0)}\right)$ and the 3 rd dilate of $\operatorname{Newt}\left(s_{(2,1,0)}\right)$.
Nice property: $t \operatorname{Newt}\left(s_{\lambda}\right)=\operatorname{Newt}\left(s_{t \lambda}\right)$ for any positive integer t.

Integer Decomposition Property

Let's take the point $(2,4,3)$, which is a filling of $3 \lambda=3(2,1,0)=(6,3,0)$.

1	1	2	2	2	3
2	3	3			

Integer Decomposition Property

Let's take the point $(2,4,3)$, which is a filling of $3 \lambda=3(2,1,0)=(6,3,0)$.

1	1	2		2		3
2	3	3				

1	1	2	2	2	3			
2	3	3				$=$	1	2
:---	:---							
2								
1	2							
3		$+$	2	3				
:---	:---							
3								

$$
(2,4,3)=(1,2,0)+(1,1,1)+(0,1,2)
$$

Integer Decomposition Property

Let's take the point $(2,4,3)$, which is a filling of $3 \lambda=3(2,1,0)=(6,3,0)$.

1	1	2	2	2	3
2	3	3			

1	1	2	2	2	3			
2	3	3				$=$	1	2
:---	:---							
2		$+$	1	2				
:---	:---							
3		$+$	2	3				
:---	:---	:---:	:---:	:---:				
3								

$$
(2,4,3)=(1,2,0)+(1,1,1)+(0,1,2)
$$

Integer decomposition property (IDP): For any positive integer t and any lattice point $\mathbf{p} \in t \mathcal{P} \cap \mathbb{Z}^{m}$, there are t lattice points
$\mathbf{v}_{1}, \ldots, \mathbf{v}_{t} \in \mathcal{P} \cap \mathbb{Z}^{m}$ such that $\mathbf{p}=\mathbf{v}_{1}+\cdots+\mathbf{v}_{t}$.
Schrijver showed using generalized permutohedra and polymatroids [4].

Symmetric Grothendieck polynomials

Definition (Theorem 2.2 Lenart [2])

Let $\mathbf{x}=\left(x_{1}, \ldots, x_{m}\right)$ and let λ be a partition with at most m parts. The symmetric Grothendieck polynomial indexed by λ is

$$
G_{\lambda}(\mathbf{x})=\sum_{\mu \in A(\lambda)}(-1)^{|\mu / \lambda|} a_{\lambda \mu} s_{\mu}(\mathbf{x})
$$

where:
(1) $\mu \supseteq \lambda$ with at most m rows,

2 the filling in the r-th row is from $\{1, \ldots, r-1\}$,
$3 a_{\lambda \mu}$ is the number of fillings of the skew shape μ / λ such that the filling increases strictly along each row and each column, and
$4 A(\lambda)=\left\{\mu \mid a_{\lambda \mu} \neq 0\right\}$.

Symmetric Grothendieck polynomials

$$
\text { Let } \lambda=(3,1,0) \vdash 4, m=3 \text {, and } \mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right) \text {. }
$$

$\square 1$	$\mu=(3,1,0)$	\emptyset	\mathcal{H}_{4}
$\square \square$	$\mu=(3,2,0)$	1	\mathcal{H}_{5}
$\square \square$	$\mu=(3,1,1)$	1 or 2	\mathcal{H}_{5}
	$\mu=(3,2,1)$	$\sqrt{1}^{1}$ or $\left[^{1}{ }^{1}\right.$	\mathcal{H}_{6}
	$\mu=(3,2,2)$	$\sqrt{1}$	\mathcal{H}_{7}

Symmetric Grothendieck polynomials

Let $\lambda=(3,1,0) \vdash 4, m=3$, and $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right)$.

$\square \square$	$\mu=(3,1,0)$	\emptyset	\mathcal{H}_{4}
	$\mu=(3,2,0)$	1	\mathcal{H}_{5}
	$\mu=(3,1,1)$	1 or 2	\mathcal{H}_{5}
	$\mu=(3,2,1)$	$\sqrt{1}_{1}$ or ${ }^{1}$	\mathcal{H}_{6}
\square	$\mu=(3,2,2)$	1 1 1	\mathcal{H}_{7}

$$
\begin{aligned}
& G_{(3,1,0)}(\mathbf{x})= \\
& s_{(2,1,0)}(\mathbf{x})-\left(s_{(3,2,0)}(\mathbf{x})+2 s_{(3,1,1)}(\mathbf{x})\right)+2 s_{(3,2,1)}(\mathbf{x})-s_{(3,2,2)}(\mathbf{x}) .
\end{aligned}
$$

Symmetric Grothendieck polynomials - Newton Polytopes

The Newton polytope of
$G_{(3,1,0)}\left(x_{1}, x_{2}, x_{3}\right)=s_{(3,1,0)}-\left(s_{(3,2,0)}+2 s_{(3,1,1)}\right)+2 s_{(3,2,1)}-s_{(3,2,2)}$.

Symmetric Grothendieck polynomials - Newton Polytopes

The Newton polytope of
$G_{(3,1,0)}\left(x_{1}, x_{2}, x_{3}\right)=s_{(3,1,0)}-\left(s_{(3,2,0)}+2 s_{(3,1,1)}\right)+2 s_{(3,2,1)}-s_{(3,2,2)}$.

Unfortunate Property: $t \operatorname{Newt}\left(G_{\lambda}(\mathbf{x})\right) \neq \operatorname{Newt}\left(G_{t \lambda}(\mathbf{x})\right)$.

Symmetric Grothendieck polynomials - Newton Polytopes
Unfortunate Property: $t \operatorname{Newt}\left(G_{\lambda}(\mathbf{x})\right) \neq \operatorname{Newt}\left(G_{t \lambda}(\mathbf{x})\right)$.

$\operatorname{Newt}\left(G_{(3,1,0)}\right)$	$2 \operatorname{Newt}\left(G_{(3,1,0)}\right)$
$\mu=(3,1,0)$	$(6,2,0)$
$(3,2,0)$	$(6,4,0)$
$(3,1,1)$	$(6,2,2)$
$(3,2,1)$	$(6,4,2)$
$(3,2,2)$	$(6,4,4)$

Symmetric Grothendieck polynomials - Newton Polytopes

Unfortunate Property: $t \operatorname{Newt}\left(G_{\lambda}(\mathbf{x})\right) \neq \operatorname{Newt}\left(G_{t \lambda}(\mathbf{x})\right)$.

$\operatorname{Newt}\left(G_{(3,1,0)}\right)$	$2 \operatorname{Newt}\left(G_{(3,1,0)}\right)$
$\mu=(3,1,0)$	$(6,2,0)$
$(3,2,0)$	$(6,4,0)$
$(3,1,1)$	$(6,2,2)$
$(3,2,1)$	$(6,4,2)$
$(3,2,2)$	$(6,4,4)$

Consider $2 \lambda=(6,2,0)=\square \square \square \square \square . \operatorname{Newt}\left(G_{(6,2,0)}\right)$ is given by
the convex hull of the union of S_{3} orbit of
$\mu=(6,2,0),(6,3,0),(6,2,1),(6,3,1),(6,3,2)$.

inflated Symmetric Grothendieck polynomials

Definition

Let h be a positive integer. Let $\mathbf{x}=\left(x_{1}, \ldots, x_{m}\right)$ and let $\lambda \vdash n$ be a partition with at most m parts. The inflated symmetric Grothendieck polynomial indexed by λ and h is

$$
G_{h, \lambda}(\mathbf{x})=\sum_{\mu \in A(h, \lambda)}(-1)^{|\mu / \lambda|} b_{h, \lambda \mu} s_{\mu}(\mathbf{x})
$$

$11 \supseteq \lambda$ with at most m rows,
2 the filling in the r-th row is from $\{1, \ldots, h(r-1)\}$,
$3 b_{h, \lambda \mu}$ be the number of fillings of the skew shape μ / λ such that the filling increases strictly along each row and each column, and
$4 A(h, \lambda)=\left\{\mu \mid b_{h, \lambda \mu} \neq 0\right\}$.

inflated Symmertic Grothendieck polynomials

Let $h=2, m=3$, and $\lambda=(3,1,0)$.

$\square \square$	$\mu=(3,1,0)$	\mathcal{H}_{4}			$\mu=(3,3,0)$	\mathcal{H}_{6}
	$\mu=(3,2,0)$	\mathcal{H}_{5}			$\mu=(3,3,1)$	\mathcal{H}_{7}
	$\mu=(3,1,1)$	\mathcal{H}_{5}			$\mu=(3,3,2)$	\mathcal{H}_{8}
	$\mu=(3,2,1)$	\mathcal{H}_{6}		\square	$\mu=(3,3,3)$	\mathcal{H}_{9}
	$\mu=(3,2,2)$	\mathcal{H}_{7}				

Dominating Partitions

Let $h=2, m=3$, and $\lambda=(3,1,0)$. The Newton polytope of $G_{2,(3,1,0)}\left(x_{1}, x_{2}, x_{3}\right)=$
$s_{(3,1,0)}-2\left(s_{(3,2,0)}+4 s_{(3,1,1)}\right)+8 s_{(3,2,1)}+2 s_{(3,3,0)}-\left(11 s_{(3,2,2)}+4 s_{(3,3,1)}\right)$ $+6 s_{(3,3,2)}-2 s_{(3,3,3)}$.

Dominating Partitions

Let $h=2, m=3$, and $\lambda=(3,1,0)$. The Newton polytope of $G_{2,(3,1,0)}\left(x_{1}, x_{2}, x_{3}\right)=$
$s_{(3,1,0)}-2\left(s_{(3,2,0)}+4 s_{(3,1,1)}\right)+8 s_{(3,2,1)}+2 s_{(3,3,0)}-\left(11 s_{(3,2,2)}+4 s_{(3,3,1)}\right)$ $+6 s_{(3,3,2)}-2 s_{(3,3,3)}$.

For two partitions $\mu, \lambda \vdash n \mu$ dominates λ if
$\mu_{1}+\cdots+\mu_{i} \geq \lambda_{1}+\cdots+\lambda_{i}$ for every $i \geq 1$.
If $\operatorname{deg} G_{h, \lambda}(\mathbf{x})=|\lambda|+N$, we say $\lambda^{(0)}, \ldots, \lambda^{(N)}$ is the sequence of dominating partitions for $G_{h, \lambda}(\mathbf{x})$.

Integer Decomposition Property - iSGP

Let t be a positive integer. Then

$$
t \operatorname{Newt}\left(G_{h, \lambda}(\mathbf{x})\right)=\operatorname{Newt}\left(G_{t h, t \lambda}(\mathbf{x})\right)
$$

Example (Dominating Partitions)

$\operatorname{Newt}\left(G_{1,(3,1,0)}\right)$	$2 \operatorname{Newt}\left(G_{1,(3,1,0)}\right)$	$\operatorname{Newt}\left(G_{2,(6,2,0)}\right)$
$\mu=(3,1,0)$	$(6,2,0)$	$(6,2,0)$
		$(6,3,0)$
$(3,2,0)$	$(6,4,0)$	$(6,4,0)$
		$(6,4,1)$
$(3,2,1)$	$(6,4,2)$	$(6,4,2)$
		$(6,4,3)$
$(3,2,2)$	$(6,4,4)$	$(6,4,4)$

Theorem

Let λ be a partition with at most m parts and let $\mathbf{x}=\left(x_{1}, \ldots, x_{m}\right)$. Then the Newton polytope $\operatorname{Newt}\left(G_{h, \lambda}(\mathbf{x})\right)$ has the integer decomposition property.

Theorem

Let λ be a partition with at most m parts and let $\mathbf{x}=\left(x_{1}, \ldots, x_{m}\right)$. Then the Newton polytope $\operatorname{Newt}\left(G_{h, \lambda}(\mathbf{x})\right)$ has the integer decomposition property.

Other Results:

- Classify which Newton polytopes of Schur and inflated Symmetric Grothendieck polynomials are reflexive.
- For the reflexive Newton polytopes of Schur polynomials we show the h^{*} - polynomials are unimodal.
Lattice polytopes from Schur and symmetric Grothendieck polynomials.
Arxiv: 2005.09628v2 [math.CO]

E Laura Escobar and Alexander Yong.
Newton polytopes and symmetric Grothendieck polynomials.
C. R. Math. Acad. Sci. Paris, 355(8):831-834, 2017.

- Cristian Lenart.

Combinatorial aspects of the K-theory of Grassmannians.
Ann. Comb., 4(1):67-82, 2000.
目 Cara Monical, Neriman Tokcan, and Alexander Yong. Newton polytopes in algebraic combinatorics, 2017.
Preprint. arXiv:1703.02583.
國 Alexander Schrijver.
Combinatorial optimization. Polyhedra and efficiency. Vol. B, volume 24 of Algorithms and Combinatorics.
Springer-Verlag, Berlin, 2003.
Matroids, trees, stable sets, Chapters 39-69.

IDP- Counterexample

Not all polytopes have the integer decomposition property. For example consider the convex hull $(1,0),(0,1)$, and $(2,2)$. The second dilate contains the point $(3,3)$ but there are no two points that add to $(3,3)$.

