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The subword order poset

A∗ is the free monoid of words of finite length in an alphabet A.
Subword order is defined on A∗ by setting u ≤ v if u is a subword
of v , that is, the word u is obtained by deleting letters of the word
v .
(A∗,≤) is a graded poset with rank function given by the length
|w | of a word w , the number of letters in w .
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The first two nontrivial ranks of the poset for |A| = 3, its
order complex and topology

Let A = {a, b, c}. Consider words of length at most 2 in A.
The least element 0̂ is the empty word. There are 3 words of
length 1 and 9 words of length 2.

0̂

1̂

aaab

a

ba

b

bb bc

c

cb cc ac ca
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The action of the symmetric group

Suppose now that the alphabet A is finite, of cardinality n.
The symmetric group Sn acts on A = {a1, . . . , an}, and thus on A∗

by replacement of letters: ai 7→ aσ(i) for σ ∈ Sn.

Example

A = {a1, a2, a3}. For σ = (12),

σ · (a1a2a1a3a3a2) = a2a1a2a3a3a1.

To avoid trivialities we will assume n ≥ 2.
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Frank Farmer (1979) - I

Definition (Farmer)

A word α in A∗ is normal if no two consecutive letters of α are the
same.

For example, aabbcccaabbcc is not normal, while abcabc is
normal.
Normal words are also called Smirnov words.
The number of normal words of length i is n(n − 1)i−1.
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Frank Farmer (1979) - II

Theorem (Farmer)

1 Let α be any word in A∗. Then the Möbius function of
subword order satisfies

µ(0̂, α) =

{
(−1)|α|, if α is a normal word

0, otherwise.

2 Let |A| = n and let A∗n,k denote the subposet of A∗ consisting
of words of length at most k, with an artificially appended top
element 1̂. Then

µ(A∗n,k) = µ(0̂, 1̂) = (−1)k−1(n − 1)k .

3 A∗n,k has the homology of a wedge of (n − 1)k spheres of
dimension (k − 1).

6 / 38



Anders Björner (1990)

Theorem (Björner)

The poset A∗n,k of nonempty words of length at most k is dual
CL-shellable. Hence its order complex is homotopy equivalent to a
wedge of (n − 1)k spheres of dimension k − 1.
Moreover, the Möbius function is determined as follows. Let β be
a word in A∗ of length k . Then

∑
α∈A∗

µ(β, α)t |α| =
tk(1− t)

(1 + (n − 1)t)k+1
.

In particular, there is a unique nonvanishing homology group
H̃(A∗n,k) in the top degree k − 1. As an Sn-module, it is of

dimension (n − 1)k .
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Sn acts on the chains

Example (n=3: the 15 chains in A3,2, words of length at most 2)

{a < ab, b < ab, a < ba, b < ba, a < ac, c < ac, a < ca, c <
ca, b < bc, c < bc, b < cb, c < cb} and {a < aa, b < bb, c < cc}.

Notice:
The three chains {a < aa, b < bb, c < cc} span an invariant
subspace, closed under the action of S3. This is the natural or
defining representation V3 of S3.

Its S3-invariant complement W3 is the 12-dimensional space
spanned by the chains of the form x < xy , x < yx , where
x ∈ {a, b, c} and y 6= x .
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S3 acting on the chains for words of length at most 2.

In this case, the action decomposes into one copy of V3 and two
copies of the regular representation.
This is not obvious from the basis of chains.

aaab
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bb bc

c
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The reflection representation

Definition

The natural (or defining) representation Vn of Sn is the action of
Sn on the n one-element subsets of [n].

Theorem (Standard Fact)

Vn decomposes into two invariant subspaces; the trivial
representation S(n) and the reflection representation S(n−1,1),
indexed by the integer partition (n − 1, 1) of n.
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The Sn-action on the homology module H̃(A∗n,k)

Theorem (Björner-Stanley)

H̃(A∗n,k) is isomorphic to the kth tensor power of the reflection
representation S(n−1,1).

Proof.

(Sketch) Use the Hopf trace formula. The Möbius number
calculation can be translated into a character formula for the
Sn-action.
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Rank selection

Let S be a subset of the ranks [1, k]. Consider the subposet
A∗n,k(S) of words with lengths in S . This is also invariant under Sn,
and has unique nonvanishing homology (dual CL-shellability is
preserved).

Theorem (S, 2020)

For any subset S = {1 ≤ s1 < . . . < sp ≤ k} of [1, k], the action
on the chains of A∗n,k(S) is given by the Sn-module

p⊗
r=1

(sr−sr−1⊕
i=0

(
sr
i

)
S⊗i(n−1,1)

)
, s0 = 1.

In particular, it is a nonnegative integer combination of
nonnegative tensor powers of the reflection representation.

12 / 38



The maximal chains

Theorem (S, 2020)

The action of Sn on the maximal chains of A∗n,k decomposes into
the sum

k+1⊕
j=1

c(k + 1, j)Sk+1−j
(n−1,1),

where c(k + 1, j) is the number of permutations in Sk+1 with
exactly j cycles in its disjoint cycle decomposition.

The dimension version of this is due to Viennot (JCTA, 1983).
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Richard Stanley: Rank-selected homology

Stanley’s theory of rank-selected poset homology (JCTA, 1982):

Theorem

Let P be a bounded ranked Cohen-Macaulay poset with
automorphism group G , and let S be any subset of ranks. Let PS

be the corresponding rank-selected subposet of P. Let αG (S),
βG (S) denote respectively the actions of G on the maximal chains
and the homology of PS . Then

αG (T ) =
∑
S⊆T

βG (S) and thus βG (T ) =
∑
S⊆T

(−1)|T |−|S |αG (S).
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Theorem on homology

Theorem (S, 2020)

The Sn-action on the homology of the rank-selected subposet
A∗n,k(T ),T 6= ∅, is an integer combination of positive tensor
powers of the irreducible indexed by (n − 1, 1). The highest tensor
power that can occur is the mth, where m = max(T ).

Conjecture (A)

Let A be an alphabet of size n ≥ 2. Then the Sn-action on the
homology of any finite nonempty rank-selected subposet of
subword order on A∗ is a nonnegative integer combination of
positive tensor powers of the irreducible indexed by the partition
(n − 1, 1).
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Words of bounded length; the rank-set [r , k]

Theorem (S, 2020)

Fix k ≥ 1 and let S be the interval of consecutive ranks [r , k] for
1 ≤ r ≤ k . Then the rank-selected subposet A∗n,k(S) has unique
nonvanishing homology in degree k − r , and the Sn-homology
representation on H̃k−r (A∗n,k(S)) is given by the decomposition

k⊕
i=1+k−r

bi S
⊗i
(n−1,1), where bi =

(
k

i

)(
i − 1

k − r

)
, i = 1 +k− r , . . . , k .
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Deleting one rank

Let S be the rank-set S = [1, k]\{r}, corresponding to the
subposet obtained by removing all words of length r , for a fixed r
in [1, k].

Theorem (S, 2020)

As an Sn-module, we have

H̃k−2(A∗n,k(S)) '
[(

k

r

)
− 1

]
S⊗k(n−1,1) ⊕

(
k

r

)
S⊗k−1(n−1,1).

Notice: If r < k , the subposet obtained by deleting words of length
r has the same homology module as the subposet obtained by
deleting words of length k − r .
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Question: Explicit homotopy equivalence?

Corollary (S, 2020)

Let |A| = n. Fix a rank r ∈ [1, k − 1]. Then the homology modules
of the subposets A∗n,k([1, k]\{r}) and A∗n,k([1, k]\{k − r}) are
Sn-isomorphic.

Question

Is there an Sn-homotopy equivalence between the simplicial
complexes associated to the subposets A∗n,k([1, k]\{r}) and
A∗n,k([1, k]\{k − r})?
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Conjecture (A) – (I)

Conjecture (A) is true for all rank-selected chain modules, and also
the rank-selected homology modules for the rank-set S where

(1) S = [r , k]; (2)S = [1, k]\{r}; (3)S = {1 ≤ s1 < s2}.
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Methods: Whitney homology and the Hopf trace formula

Techniques from [S, Adv. in Math 1994]and [S, Jerusalem
Combinatorics, Contemp. Math, 1994]:

Theorem (S, 1994)

Equivariant acyclicity of Whitney homology

Theorem (S, 1994)

A formula for finding the homology of subposets from the known
homology of the poset P, e.g. by deleting an antichain.
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Methods – II

Also, inspired by an observation of Richard Stanley:

Proposition (S, 2020)

Subword order belongs to a family of posets {Pn} with
automorphism group Sn such that the action of Sn is determined
by the Möbius number µ(Pn) as a polynomial in n.

Hopf trace formula says that the trace of g ∈ G on the Lefschetz
module of a G -invariant poset P is the Möbius number of the
fixed-point subposet Pg .
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Conjecture (A) – (II)

Conjecture (A) is also true for the following:

Theorem (S, 2020)

In the poset A∗n,k , for 1 ≤ i ≤ k :

1 The Whitney homology module

WHi :=
⊕
|x |=i

H̃(0̂, x)

' S⊗i(n−1,1) ⊕ S⊗i−1(n−1,1);

2 The dual Whitney homology module

WH∗k+1−i :=
⊕

|x |=k+1−i

H̃(x , 1̂)'
i⊕

j=0

(
k

i

)(
i

j

)
S⊗j+k−i
(n−1,1) .
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The case n = 3, k = 2 revisited

The S3-module structure on the maximal chains is

c(3, 1)S⊗2(n−1,1) ⊕ c(3, 2)S(n−1,1) ⊕ c(3, 3)S(3).

But we know this is a permutation module. In fact, its Frobenius
characteristic is (with ∗ denoting the internal product):

2s(2,1) ∗ s(2,1) + 3s(2,1) + s(3) = h1h2 + 2h31.

It is h-positive!

Note: permutation modules are not necessarily h-positive, e.g. S4
acting on the three set partitions 12/34, 13/24, 14/23 :

h4 + h22 − h1h3.
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h-positivity

hn is the complete homogeneous symmetric function of degree n.

Definition (Hooks)

Set T1(n) := {hλ : λ = (n − r , 1r ), r ≥ 1},

and T2(n) := {hλ : λ = (n − r , 1r ), r ≥ 2}.

Theorem (S, 2020)

The Whitney and dual Whitney homology are permutation
modules with h-positive Frobenius characteristic supported on the
set T2(n), except for WHi , i = 0, 1.

chWH0 = hn, chWH1 = h1hn−1, and for j ≥ 2,

chWHj =

j∑
d=2

S(j − 1, d − 1) hd1hn−d ,

Here S(n, k) is the Stirling number of the second kind.
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Action on chains is h-positive

Theorem (S, 2020)

The action of Sn on the maximal chains of the rank-selected
subposet of A∗ of words with lengths in T , is a nonnegative integer
combination of tensor powers of the reflection representation
S(n−1,1). The Frobenius characteristic is h-positive and supported
on the set T1(n) = {hλ : λ = (n − r , 1r ), r ≥ 1} if |T | ≥ 1. The
coefficient of h1hn−1 is always 1.

Corollary

For n = 2, the action on the chains of a rank-selected subposet of
A∗ of words with lengths in T is always a multiple of the regular
representation.
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“almost” h-positivity (I)

Let s(n−1,1) denote the Schur function indexed by the partition
(n − 1, 1).

Theorem (S, 2020)

Let T ⊆ [1, k] be any nonempty subset of ranks in A∗n,k . The
following statements hold for the Frobenius characteristic Fn(T ) of
the homology representation H̃(A∗n,k(T )) :

1 its expansion in the basis of homogeneous symmetric
functions is an integer combination supported on the set
T1(n) = {hλ : λ = (n − r , 1r ), r ≥ 1}.

2 Fn(T ) + (−1)|T |s(n−1,1) is supported on the set
T2(n) = {hλ : λ = (n − r , 1r ), r ≥ 2}.

When is this expansion actually h-positive?
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“almost” h-positivity (II)

Theorem

For any nonempty rank set T ⊆ [1, k], consider the module
H̃k−2(A∗n,k(T )) + (−1)|T |S(n−1,1).

Its Frobenius characteristic Fn,k(T ) + (−1)|T |s(n−1,1) is supported
on the set T2(n) = {hλ : λ = (n − r , 1r ), r ≥ 2} with nonnegative
integer coefficients in each of the following cases:

1 T = [r , k], k ≥ r ≥ 1.

2 T = [1, k]\{r}, k ≥ r ≥ 1.

3 T = {1 ≤ s1 < s2 ≤ k}.
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Conjecture (B)

Conjecture (B)

Let A be an alphabet of size n ≥ 2. Then the homology of any
finite nonempty rank-selected subposet of subword order on A∗,
plus or minus one copy of the reflection representation of Sn, is a
permutation module. In fact its Frobenius characteristic is
h-positive and supported on the set

T2(n) = {hλ : λ = (n − r , 1r ), r ≥ 2}.
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Tensor powers of the reflection representation S(n−1,1) – (I)

Theorem (S, 2020)

Fix k ≥ 1. The kth tensor power of the reflection representation
S⊗k(n−1,1), i.e. the homology module H̃k−1(A∗n,k), has the following

property: S⊗k(n−1,1) ⊕ (−1)kS(n−1,1) is a permutation module Un,k

whose Frobenius characteristic is h-positive, and is supported on
the set {hλ : λ = (n − r , 1r ), r ≥ 2}. If k = 1, then Un,1 = 0.

More precisely, the k-fold internal product s∗k(n−1,1) has the following
expansion in the basis of homogeneous symmetric functions hλ :

n∑
d=0

gn(k , d)hd1hn−d ,

where gn(k , 0) = (−1)k , gn(k , 1) = (−1)k−1, and
gn(k , d) =

∑k
i=d(−1)k−iS(i − 1, d − 1), for 2 ≤ d ≤ n.
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Tensor powers of S(n−1,1) – (II)

Hence s∗k(n−1,1) = (−1)k−1(s(n − 1, 1) + ch (Un,k), where

ch (Un,k) =
∑n

d=2 gn(k, d)hd1hn−d .
The integers gn(k , d) are independent of n for k ≤ n, nonnegative
for 2 ≤ d ≤ k , and gn(k, d) = 0 if d > k . Also:

1 gn(k , 2) = 1+(−1)k
2 .

2 gn(k , k − 1) =
(k−1

2

)
− 1, k ≤ n.

3 gn(k , k) = 1, k < n.
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Enumerative consequences – (I)

Theorem (S, 2020)

The positive integer βn(k) =
∑min(n,k)

d=2 gn(k , d) is the multiplicity

of the trivial representation in S⊗k(n−1,1). When n ≥ k , it equals the

number of set partitions B≥2k of the set {1, . . . , k} with no
singleton blocks.

This gives the stable dimension of the quotient complex.
Also βn(n + 1) = B≥2n+1 − 1 and βn(n + 2) = B≥2n+2 −

(n+1
2

)
.

31 / 38



Enumerative consequences – (I)

Theorem (S, 2020)

The positive integer βn(k) =
∑min(n,k)

d=2 gn(k , d) is the multiplicity

of the trivial representation in S⊗k(n−1,1). When n ≥ k , it equals the

number of set partitions B≥2k of the set {1, . . . , k} with no
singleton blocks.
This gives the stable dimension of the quotient complex.
Also βn(n + 1) = B≥2n+1 − 1 and βn(n + 2) = B≥2n+2 −

(n+1
2

)
.

31 / 38



Enumerative consequences – (II)

Theorem (S, 2020; (?))

The first n − 1 positive tensor powers of S(n−1,1) are an integral
basis for the vector space spanned by the positive tensor powers.
The nth tensor power of S(n−1,1) is an integer linear combination
of the first (n − 1) tensor powers:

S⊗n(n−1,1) =
n−1⊕
k=1

ak(n)S⊗k(n−1,1),

with an−1(n) =
(n−1

2

)
.
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Enumerative consquences – (III)

Let c(n, j) be the number of permutations in Sn with exactly j
disjoint cycles.
A recurrence for the coefficients ak(n) is:

an−1(n) =

(
n − 1

2

)
;

(n − 2)aj(n)− aj−1(n) = (−1)n−j [c(n, j)− c(n, j − 1)],

2 ≤ j ≤ n − 1;

(n − 2)a1(n) = c(n, 1)(−1)n−1

=⇒ a1(n) =
(n − 1)!

n − 2
(−1)n−1 = (−1)n−1[(n − 2)! + (n − 3)!]
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Enumerative Questions – (I)

Question

Recall that an−1(n) =
(n−1

2

)
. Is there a combinatorial interpretation

for the signed integers ai (n)? There are many interpretations for
(−1)n−1a1(n) = (n − 2)! + (n − 3)!, see OEIS A001048.

For n ≥ 4 it is also the size of the largest conjugacy class in Sn−1.
The other sequences {ai (n)}n≥3 are NOT in OEIS.
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Some data

Example

Write X k
n for S⊗k(n−1,1). Maple computations with Stembridge’s SF

package show that

1 X 3
3 = X 2

3 + 2X3.

2 X 4
4 = 3X 3

4 + X 2
4 − 3X4.

3 X 5
5 = 6X 4

5 − 7X 3
5 − 6X 2

5 + 8X5.

4 X 6
6 = 10X 5

6 − 30X 4
6 + 20X 3

6 + 31X 2
6 − 30X6

5 X 7
7 = 15X 6

7 − 79X 5
7 + 165X 4

7 − 64X 3
7 − 180X 2

7 + 144X7

6 X 8
8 =

21X 7
8 −168X 6

8 + 630X 5
8 −1029X 4

8 + 189X 3
8 + 1198X 2

8 −840X8.
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Enumerative Questions – (II)

Question

For fixed k and n, what do the positive integers gn(k , d) count? Is

there a combinatorial interpretation for βn(k) =
∑min(n,k)

j=d gn(k , d),
the multiplicity of the trivial representation in the top homology of
A∗n,k , in the nonstable case k > n?

Recall that for k ≤ n, this is the number B≥2k of set partitions of
[k] with no singleton blocks, and is sequence OEIS A000296.
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Enumerative Questions – (III)

Proposition (S, 2020)

There are two formulas for gn(k, d) :

k∑
j=d

(−1)k−jS(j − 1, d − 1) =
k−d∑
r=0

(−1)r
(

k

k − r

)
S(k − r , d).

In particular, when n ≥ k , this multiplicity is independent of n.

Question

Is there a combinatorial explanation?

Note: The blue formula shows that gn(k , d) is a nonnegative
integer.
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THANK YOU FOR THE INVITATION TO SPEAK

AND

THANK YOU FOR LISTENING!
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