Sylvan structures on near-cones

Erika Ordog
Texas A\&M University
Joint work with Jack Eagon and Ezra Miller

September 13, 2020

Notation and definitions

- $\mathbf{x}=x_{1}, x_{2}, \ldots, x_{n}$
- $S=\mathbb{k}[\mathbf{x}]=\bigoplus_{\mathbf{b} \in \mathbb{N}^{n}} \mathbb{k}\left\{\mathbf{x}^{\mathbf{b}}\right\}$
- monomial: $\mathbf{x}^{\mathbf{b}}=x_{1}^{b_{1}} x_{2}^{b_{2}} \cdots x_{n}^{b_{n}}$
- squarefree monomial: each b_{i} is either 0 or 1
- I: monomial ideal
- free module of rank r : direct sum S^{r} of copies of S
- a free resolution of I : a complex of free modules

$$
\mathcal{F}_{\bullet}: 0 \leftarrow F_{0} \stackrel{\varphi_{1}}{\leftarrow} F_{1} \leftarrow \cdots \leftarrow F_{r-1} \stackrel{\varphi_{r}}{\leftarrow} F_{r} \leftarrow 0
$$

that is exact everywhere except in homological degree 0 , where $I=F_{0} / \operatorname{im}\left(\varphi_{1}\right)$

- $i^{\text {th }}$ Betti number of I in degree b : the rank $\beta_{i, \mathbf{b}}$ $F_{i}=\bigoplus_{\mathbf{b} \in \mathbb{N}^{n}} S(-\mathbf{b})^{\beta_{i, \mathbf{b}}}$ in a minimal free resolution of I

Koszul simplicial complexes

- $K^{\mathbf{b}} I=\left\{\right.$ squarefree $\left.\tau \mid \mathbf{x}^{\mathbf{b}-\tau} \in I\right\}$
- Hochster's formula [Hochster 1977]:

$$
\beta_{i, \mathbf{b}} I=\operatorname{dim}_{\mathbb{k}} \widetilde{H}_{i-1}\left(K^{\mathbf{b}} / ; \mathbb{k}\right)
$$

- Modules in a free resolution of I :

$$
F_{i}=\bigoplus_{\mathbf{b} \in \mathbb{N}^{n}} \widetilde{H}_{i-1}\left(K^{\mathbf{b}} / ; \mathbb{k}\right) \otimes_{\mathbb{k}} \mathbb{k}[\mathbf{x}](-\mathbf{b})
$$

- Define a map $F_{i-1} \leftarrow F_{i}$ by defining a map

$$
\widetilde{C}_{i-2}\left(K^{\mathbf{a}} I\right) \leftarrow \widetilde{C}_{i-1}\left(K^{\mathbf{b}} I\right)
$$

that induces a well-defined homomorphism on homology

Shrubberies, stakes, and hedges

- K_{i} : set of i-faces of a simplicial complex K
- shrubbery $T_{i} \subseteq K_{i}$: set of i-faces such that ∂T_{i} is a \mathbb{k}-basis for \widetilde{B}_{i-1}
- shrubbery $=$ spanning tree or spanning forest
- stake set $S_{i-1} \subseteq K_{i-1}$: set of $(i-1)$-faces such that $K_{i-1} \backslash S_{i-1}$ gives a basis for $\widetilde{C}_{i-1} / \widetilde{B}_{i-1}$
- hedge $S T_{i}$: a pair $\left(S_{i-1}, T_{i}\right)$ consisting of a stake set S_{i-1} of dimension $i-1$ and a shrubbery T_{i} of dimension i

$$
\begin{aligned}
& \begin{array}{l}
T_{1}=\{a c, b c, b d, d e\} \\
S_{0}=\{b, c, d, e\} \\
S T_{1}=\left(S_{0}, T_{1}\right)
\end{array}
\end{aligned}
$$

Splittings from shrubberies and stake sets

- A splitting of a complex C. consists of a differential

$$
d^{+}=d_{i}^{+}: C_{i} \rightarrow C_{i+1}
$$

such that $d d^{+} d=d$ and $d^{+} d d^{+}=d^{+}$.

- This is equivalent to a direct sum decomposition $C_{i}=B_{i-1}^{\prime} \oplus H_{i} \oplus B_{i}$, where B_{i} is the image $d\left(C_{i+1}\right), H_{i}$ is isomorphic to $H_{i}\left(C_{0}\right)$, and B_{i-1}^{\prime} is isomorphic to B_{i-1}.
- Each hedge $S T_{i}=\left(S_{i-1}, T_{i}\right)$ defines a hedge splitting $d_{S T_{i}}^{+}: C_{i-1} \rightarrow C_{i}$ via

1. $d^{+} d(t)=t$ for all $t \in T_{i}$
2. $d^{+}(s)=0$ for all $s \in \bar{S}_{i-1}$

- A community is a sequence of hedges $S T_{\bullet}=\left(S T_{0}, S T_{1}, S T_{2}, \ldots\right)$ such that $T_{i} \cap S_{i}=\emptyset$, and it defines a differential d^{+}comprised of hedge splittings.

Minimal free resolutions from hedge splittings

Theorem (Eagon-Miller-O. 2019)

Fix a monomial ideal I. Any hedge splittings $d_{\mathbf{b}}^{+}$of the boundary maps $d_{\mathbf{b}}$ of the Koszul simplicial complexes $K^{\mathbf{b}} /$ yield a minimal free resolution of I whose differential from homological stage $i+1$ to stage i has its component
$\widetilde{H}_{i} K^{\mathbf{b}} / \otimes \mathbb{k}[\mathbf{x}](-\mathbf{b}) \rightarrow \widetilde{H}_{i-1} K^{\mathbf{a}} / \otimes \mathbb{k}[\mathbf{x}](-\mathbf{a})$ induced by the map

$$
D: \widetilde{H}_{i} K^{\mathrm{b}} I \rightarrow \widetilde{H}_{i-1} K^{\mathrm{a}} I
$$

in \mathbb{N}^{n}-degree \mathbf{b} that acts on any i-cycle in $\widetilde{Z}_{i} K^{\mathbf{b}} /$ via

$$
D=\sum_{\lambda \in \Lambda(\mathbf{a}, \mathbf{b})}\left(I^{\mathbf{a}}-d_{i}^{\mathbf{a}+} d_{i}^{\mathbf{a}}\right) d_{1}^{\lambda_{\ell}}\left(\prod_{j=1}^{\ell-1} d_{i}^{\mathbf{b}_{j}+} d_{1}^{\lambda_{j}}\right)\left(I^{\mathbf{b}}-d_{i+1}^{\mathbf{b}} d_{i+1}^{\mathbf{b}+}\right)
$$

where $d_{1}=d_{1}^{e_{1}}+d_{1}^{e_{2}}+\ldots+d_{1}^{e_{n}}$ acts as the boundary operator, and $\lambda_{j}=e_{k}$ for some k.

Lattice paths

$$
\begin{aligned}
& \widetilde{C}_{i-1} K^{\mathrm{a}} I \quad \stackrel{d_{1}^{\lambda_{\ell}}}{\longleftrightarrow} \\
& \partial_{i}^{\mathbf{a}+} \uparrow \downarrow \partial_{i}^{\mathbf{a}} \quad \uparrow \partial_{i}^{\mathbf{b}_{\ell-1}+} \\
& \tilde{C}_{i-1} K^{\mathbf{b}_{\ell-1}} / \stackrel{d_{1}^{\lambda_{\ell-1}}}{\longleftrightarrow} \\
& \uparrow \partial_{i}^{\mathbf{b}_{2}+} \\
& \widetilde{C}_{i-1} K^{\mathrm{b}_{2}} \quad \stackrel{d_{1}^{\lambda_{2}}}{\longleftarrow} \\
& \uparrow \partial_{i}^{\mathbf{b}_{1}+} \quad \partial_{i+1}^{\mathbf{b}} \downarrow \uparrow \partial_{i+1}^{\mathbf{b}+} \\
& \widetilde{C}_{i-1} K^{\mathbf{b}_{1}} I \stackrel{d_{1}^{\lambda_{1}}}{\longleftarrow} \widetilde{C}_{i} K^{\mathbf{b}} I \\
& D=\sum_{\lambda \in \Lambda(\mathbf{a}, \mathbf{b})}\left(I^{\mathbf{a}}-\partial_{i}^{\mathbf{a}+} \partial_{i}^{\mathbf{a}}\right) d_{1}^{\lambda_{\ell}}\left(\prod_{j=1}^{\ell-1} \partial_{i}^{\mathbf{b}_{j}+} d_{1}^{\lambda_{j}}\right)\left(I^{\mathbf{b}}-\partial_{i+1}^{\mathbf{b}} \partial_{i+1}^{\mathbf{b}+}\right),
\end{aligned}
$$

Stable ideals

- For a monomial $\mathbf{x}^{\mathbf{b}}$, let $m(\mathbf{b})$ be the maximum index of a nonzero entry of \mathbf{b}.
- A monomial ideal I is stable if for every monomial $\mathbf{x}^{\mathbf{b}} \in I$, $\mathbf{x}^{\mathbf{b}-e_{m(\mathbf{b})}+e_{i}} \in I$ for all $1 \leq i<m(\mathbf{b})$.
- Example: $I=\left\langle x_{1}^{2}, x_{1} x_{2}, x_{1} x_{3}, x_{2}^{2}, x_{2} x_{3}\right\rangle$
- Recall: $K^{\mathbf{b}} I=\left\{\right.$ squarefree $\left.\tau \mid \mathbf{x}^{\mathbf{b}-\tau} \in I\right\}$
- If $e_{m(\mathbf{b})} \npreceq \tau$, then $m(\mathbf{b})=m(\tau)$ and $\mathbf{x}^{\mathbf{b}-\tau-e_{m(\mathbf{b}}+e_{i}} \in I$, so $\tau+e_{m(\mathbf{b})}-e_{i} \in K^{\mathbf{b}} /$
- If I is stable, $K^{\text {b }} /$ is a near-cone.

Near-cones

- A simplicial complex Δ on the vertices $\left\{e_{1}, \ldots, e_{n}\right\}$ is a near-cone if for every $\tau \in \Delta$ such that $e_{n} \npreceq \tau$, then $\tau-e_{j}+e_{n} \in \Delta$ for all $e_{j} \preceq \tau$. For a near-cone Δ, define $B(\Delta)=\left\{\tau \in \Delta \mid \tau+e_{n} \notin \Delta\right\}$.
- Example:

$B(\Delta)=\left\{e_{1} e_{2}, e_{1} e_{3}, e_{2} e_{3}\right\}$
- Proposition [Björner-Kalai 88] The faces in $B(\Delta)$ are maximal.

Hedges in near-cones

- Proposition (with Eagon and Miller): In the Koszul complex $K^{\text {b }} /$, the set

$$
S_{i-1}=\left\{\tau \mid e_{m(\mathbf{b})} \npreceq \tau, \tau+e_{m(\mathbf{b})} \in K^{\mathbf{b}} /\right\}
$$

for faces τ of dimension $i-1$ is a stake set of dimension $i-1$, and the set

$$
T_{i}=\left\{\tau+e_{m(\mathbf{b})} \mid \tau \in S_{i-1}\right\}
$$

is a shrubbery of dimension i.

- Example: $S_{0}=\left\{e_{1}, e_{2}, e_{3}\right\}, T_{1}=\left\{e_{1} e_{4}, e_{2} e_{4}, e_{3} e_{4}\right\}$

Splittings in near-cones

- Proposition (with Eagon and Miller): Let $S T_{i}=\left(S_{i-1}, T_{i}\right)$, where $S_{i-1}=\left\{\tau \mid e_{m(\mathbf{b})} \npreceq \tau, \tau+e_{m(\mathbf{b})} \in K^{\mathbf{b}} /\right\}$ and $T_{i}=\left\{\tau+e_{m(\mathbf{b})} \mid \tau \in S_{i-1}\right\}$. Then

$$
d_{S T_{i}}^{+}(\tau)= \begin{cases}(-1)^{|\tau|}\left(\tau+e_{m(\mathbf{b})}\right) & \text { if } m(\tau)<m(\mathbf{b}) \\ & \text { and } \tau+e_{m(\mathbf{b})} \in K^{\mathbf{b}} / \\ 0 & \text { otherwise. }\end{cases}
$$

- Example: $d_{S T_{1}}^{+}\left(e_{1}\right)=-e_{1} e_{4}, d_{S T_{1}}^{+}\left(e_{4}\right)=0$

A canonical basis for homology

- The hedge splitting $d_{S T_{i}}^{+}$gives a canonical basis for $\widetilde{H}_{i-1}\left(K^{\mathrm{b}} / ; \mathbb{k}\right)$ (computed via the projection $I-d d^{+}-d^{+} d$).
- For each admissible symbol $e(\sigma, u)$ such that $\sigma+u=\mathbf{b}$, the basis element is $(-1)^{|\sigma|} \sigma+\sum_{j} c_{j} \tau_{j}$, the boundary of the face $\left(\sigma+e_{m(\mathbf{b})}\right)$.
- Example: $e_{1} e_{2}$ corresponds to the admissible symbol $e\left(e_{1} e_{2}, e_{3} e_{4}\right)$ and the canonical basis element $e_{1} e_{2}-e_{1} e_{4}+e_{2} e_{4}$

Concordance with the Eliahou-Kervaire resolution

- An admissible symbol is of the form $e(\sigma, u)$, where u is a generator of I and $m(\sigma)<m(u)$.
- The Eliahou-Kervaire resolution [Eliahou-Kervaire 1990] for stable ideals has free modules F_{q}, which are $\mathbb{k}[\mathbf{x}]$-modules generated by the admissible symbols $e(\sigma, u)$ with $|\sigma|=q$.
- The differential $d: F_{q} \rightarrow F_{q-1}$ is given by

$$
d(e(\sigma, u))=\sum_{r=1}^{q} x_{i_{r}}(-1)^{r} e\left(\sigma_{r}, u\right)-\sum_{r \in A(\sigma ; u)}(-1)^{r} y_{r} e\left(\sigma_{r}, u_{r}\right) .
$$

- When computing the sylvan differential, the only lattice paths that give nonzero coefficients in the image are all lattice paths of length one that move back in the direction of faces of σ and lattice paths ($\mathbf{b}_{\ell}, \ldots, \mathbf{b}_{1}, \mathbf{b}_{0}=\mathbf{b}$) where $\mathbf{b}_{i-1}-\mathbf{b}_{i}=m\left(\mathbf{b}_{i-1}\right)$.
- Computing the maps along these lattice paths shows concordance with the Eliahou-Kervaire resolution.

References

圊 A. Björner and G. Kalai, An extended Euler-Poincare theorem, Acta. Math. 161 (1998), 279-303.

國 John Eagon, Ezra Miller, and Erika Ordog, Minimal resolutions of monomial ideals (preprint), 2019. arXiv:1906.08837.
(S. Eliahou and M. Kervaire, Minimal resolutions of some monomial ideals, J. Alg. 129 (1990), 1-25.
(Ry Melvin Hochster, Cohen-Macaulay rings, combinatorics, and simplicial complexes, Ring theory, II, Lecture notes in pure and applied mathematics 26 (1977), 171-223.

