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The Plan

o First, I'll explain how to define chip-firing for standard representative
matrices.
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The Plan

o First, I'll explain how to define chip-firing for standard representative
matrices.

@ In this context, we get a generalization of Kirchhoff's Matrix-Tree Theorem.

o I'll provide a family of combinatorially meaningful maps that are akin to
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o First, I'll explain how to define chip-firing for standard representative
matrices.

@ In this context, we get a generalization of Kirchhoff's Matrix-Tree Theorem.

o I'll provide a family of combinatorially meaningful maps that are akin to
bijections.

@ This proof will use a geometric construction that gives a periodic tiling of
space.
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o First, I'll explain how to define chip-firing for standard representative
matrices.

@ In this context, we get a generalization of Kirchhoff's Matrix-Tree Theorem.

o I'll provide a family of combinatorially meaningful maps that are akin to
bijections.

@ This proof will use a geometric construction that gives a periodic tiling of
space.

@ My goal is for the entire talk to be understandable to a general math
audience.
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Standard Representative Matrices

Definition

A standard representative matrix D is an (r x (n+ r)) matrix of the form [/, M|
for some integer matrix M.

Vi Vo V3 Vg
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Standard Representative Matrices

A standard representative matrix D is an (r x (n+ r)) matrix of the form [/, M|
for some integer matrix M.

Any cell complex or orientable arithmetic matroid satisfying a mild condition can
be associated with a unique(ish) standard representative matrix.
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Standard Representative Matrices

Definition

A standard representative matrix D is an (r x (n+ r)) matrix of the form [/, M|
for some integer matrix M.

@ The bases of D are the linear independent sets of r columns (for this talk,
over R). The set of bases is written B(D).

Vi Vo V3 Vg

p_(1 0 2 3
0 1 -1 0
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Standard Representative Matrices

Definition

A standard representative matrix D is an (r x (n+ r)) matrix of the form [/, M|
for some integer matrix M.

@ The bases of D are the linear independent sets of r columns (for this talk,
over R). The set of bases is written B(D). Here,

B(D) = {{v1, o}, {v1, v3}, {va, v3}, {va, va}, {vs, va}}.

%1 Vo V3 V4
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0 1 -1 0
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Standard Representative Matrices

Definition

A standard representative matrix D is an (r x (n+ r)) matrix of the form [/, M|
for some integer matrix M.

@ The bases of D are the linear independent sets of r columns (for this talk,
over R). The set of bases is written B(D). Here,

B(D) = {{v1, o}, {v1, v3}, {va, v3}, {va, va}, {vs, va}}.

e The multiplicity of a basis B, written m(B), is the magnitude of its
determinant.

Vi Vo V3 Vg
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Standard Representative Matrices

Definition

A standard representative matrix D is an (r X (n+ r)) matrix of the form [/, M|
for some integer matrix M.

@ The bases of D are the linear independent sets of r columns (for this talk,
over R). The set of bases is written B(D). Here,

B(D) = {{vi, va}, {v1, va}, {v2, s}, {v2, v}, {v3, va} }.

e The multiplicity of a basis B, written m(B), is the magnitude of its
determinant. Here,

m({vi, v2}) = 1, m({vi, v3}) = 1, m({v2, v3}) = 2,
m({v2, V4}) = 3, and I’l"l({V?,7 V4}) = 3.

Vi Vo V3 Vg

p_(1 0 2 3
0 1 -1 0
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D and D

o Let D be a standard representative matrix [, M].

p_(1 0 2 3 7
01 -1 0 -2
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o Let D be a standard representative matrix [, M].

p_(1 0 2 3 7
01 -1 0 -2

o Let D be the matrix [-MT 1,
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o Let D be a standard representative matrix [, M].

p_(1 0 2 3 7
01 -1 0 -2

o Let D be the matrix [-MT 1]

o D relates to D in several ways that we will explore on the next slide.
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@ Let's look at some properties of D and D.
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@ Let's look at some properties of D and D.

o The rows of D are all orthogonal to each row of D.

@ If we restrict D to any r columns and we restrict D to the remaining n
columns, the determinants of these submatrices are equal up to sign.
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@ Let's look at some properties of D and D.

o = O
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o The rows of D are all orthogonal to each row of D.

o If we restrict D to any r columns and we restrict D to the remaining n
columns, the determinants of these submatrices are equal up to sign.
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@ Let's look at some properties of D and D.

o The rows of D are all orthogonal to each row of D.

@ If we restrict D to any r columns and we restrict D to the remaining n
columns, the determinants of these submatrices are equal up to sign.

@ Oxley showed that D and D represent dual matroids.
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@ Let's look at some properties of D and D.

The rows of D are all orthogonal to each row of D.

If we restrict D to any r columns and we restrict D to the remaining n
columns, the determinants of these submatrices are equal up to sign.

Oxley showed that D and D represent dual matroids.

o If we put D on top of D, we get an invertible square matrix of the form:
I N
o= )
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Representative Matrix Sandpile Group

@ Let D be a standard representative matrix and let

>-[3)-Lin ¢
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Representative Matrix Sandpile Group

@ Let D be a standard representative matrix and let
D I, N
2= [g) = Lhr 2]

Definition
The sandpile group of D, denoted S(D), is Z"t" /DT 7.
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Representative Matrix Sandpile Group

@ Let D be a standard representative matrix and let
D I, N
2= [g) = Lhr 2]

Definition
The sandpile group of D, denoted S(D), is Z"t" /DT 7.

@ This is a generalization of the classical sandpile group of a graph, but the
connection is too subtle to fit into this talk.
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Definition
The sandpile group of D, denoted S(D), is Z"t" /DT 7.

@ This is a generalization of the classical sandpile group of a graph, but the
connection is too subtle to fit into this talk.

@ The following theorem is closely related to Kirchhoff's Matrix-Tree Theorem.
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Representative Matrix Sandpile Group

@ Let D be a standard representative matrix and let
D I N
2= [g) = Lhr 2]

Definition
The sandpile group of D, denoted S(D), is Z"t" /DT 7.

@ This is a generalization of the classical sandpile group of a graph, but the
connection is too subtle to fit into this talk.

@ The following theorem is closely related to Kirchhoff's Matrix-Tree Theorem.

Theorem (Duval-Klivans-Martin, 2009)
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Cellular Matrix-Tree Theorem

Theorem (Duval-Klivans-Martin, 2009)

[S(D)I= Y m(B).

BeB(D)
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Cellular Matrix-Tree Theorem

Theorem (Duval-Klivans-Martin, 2009)

[S(D)I= Y m(B).

BeB(D)

vi V2 V3
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Cellular Matrix-Tree Theorem

Theorem (Duval-Klivans-Martin, 2009)

[S(D)I= Y m(B).

BeB(D)

vi V2 V3

S(D)| = m({vi, v2})* + m({v1, v3})* + m({vz, vs})* =

2 2 2
10 1 3 0 31\° 5. p a0
([t ) ([} ) vou ([ ) mrewiwone
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Cellular Matrix-Tree Theorem

Theorem (Duval-Klivans-Martin, 2009)

[S(D)I= Y m(B).

BeB(D)

e When m(B) =1 for all B € B(D), we say D represents a regular matroid.
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Cellular Matrix-Tree Theorem

Theorem (Duval-Klivans-Martin, 2009)

[S(D)I= Y m(B).

BeB(D)

e When m(B) =1 for all B € B(D), we say D represents a regular matroid.

Theorem (Merino, 1999)

When D represents a regular matroid,

S(D)| = [B(D)|
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Cellular Matrix-Tree Theorem

Theorem (Duval-Klivans-Martin, 2009)

[S(D)I= Y m(B).

BeB(D)

e When m(B) =1 for all B € B(D), we say D represents a regular matroid.

Theorem (Merino, 1999)

When D represents a regular matroid,

S(D)| = [B(D)|

@ In 2017, Backman, Baker, and Yuen defined a family of natural bijections
between S(D) and B(D) for the regular matroid case.
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Cellular Matrix-Tree Theorem

Theorem (Duval-Klivans-Martin, 2009)

[S(D)I= Y m(B).

BeB(D)

e When m(B) =1 for all B € B(D), we say D represents a regular matroid.

Theorem (Merino, 1999)

When D represents a regular matroid,

S(D)| = [B(D)|

@ In 2017, Backman, Baker, and Yuen defined a family of natural bijections
between S(D) and B(D) for the regular matroid case.

@ Recently, | defined a family of meaningful maps f : S(D) — B(D) for any
standard representative matrix D such that for every B € B(D), we have
[F1(B)| = m(B)*.
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Cellular Matrix-Tree Theorem

Theorem (Duval-Klivans-Martin, 2009)

[S(D)I= Y m(B).

BeB(D)

e When m(B) =1 for all B € B(D), we say D represents a regular matroid.

Theorem (Merino, 1999)

When D represents a regular matroid,

S(D)| = [B(D)|

@ In 2017, Backman, Baker, and Yuen defined a family of natural bijections
between S(D) and B(D) for the regular matroid case.

@ Recently, | defined a family of meaningful maps f : S(D) — B(D) for any
standard representative matrix D such that for every B € B(D), we have
|f~1(B)| = m(B)2. My goal of this presentation is to share these maps.
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Fundamental Parallelepipeds

The fundamental parallelepiped of a square matrix M with column vectors
Vi, ..., V, is the set of points:

{Za;v,- | OS aj S 1}
i=1

We use the notation Me(M) to indicate the fundamental parallelepiped of M.
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Fundamental Parallelepipeds

The fundamental parallelepiped of a square matrix M with column vectors
Vi, ..., V, is the set of points:

{Za;v,- | OS aj S 1}
i=1

We use the notation Me(M) to indicate the fundamental parallelepiped of M.

@ The polytope Mq(M) is also the zonotope or minkowski sum of the columns
vectors that make up M.
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Fundamental Parallelepipeds

Definition

The fundamental parallelepiped of a square matrix M with column vectors
Vi, ..., V, is the set of points:

{Za;v,- | OS aj S 1}
i=1

We use the notation Me(M) to indicate the fundamental parallelepiped of M.

@ The polytope Mq(M) is also the zonotope or minkowski sum of the columns
vectors that make up M.

@ In order to construct our maps, we associate each basis with the fundamental
parallelepiped of a particular matrix.
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Basis Parallelepipeds

% %
Vi V2 V3 ! 2

1 3 1 0 3
Let D = which means that D= ¢ 1 2 1.
o 1 2 -3 -2 1

S

o
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Basis Parallelepipeds

Vi Vo
Vll ‘62 ‘g 1 0 3
Let D = which means that D= ¢ 1 2 1.
o 1 2 B J— 1

@ For each basis B € B(D), we get a parallelepiped P(B) by replacing the first
r or last n entries of each column of D by 0 based on which columns make
up B.

S
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Basis Parallelepipeds

Vi Vo
Vll ‘62 ‘g 1 0 3
Let D = which means that D= ¢ 1 2 1.
o 1 2 B J— 1

@ For each basis B € B(D), we get a parallelepiped P(B) by replacing the first
r or last n entries of each column of D by 0 based on which columns make
up B (see example).

S
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The Tile Associated with D

o We call Ugcp(py P(B) the tile associated with D, denoted T (D).
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The Tile Associated with D

o We call Ugcp(py P(B) the tile associated with D, denoted T (D).

100 1 0 3 0 0 3
T(D)=n. ([0 1 of | Jn.f|o o 2| |YUn.|]0 1 2
00 1 0 -2 0 300
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The Tile Associated with D

o We call Ugcp(py P(B) the tile associated with D, denoted T (D).

100 1 0 3 0 0 3
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The Best Theorem I've Ever Proven

Theorem (M. 2020)

The parallelepipeds that make up T(D) have non overlapping interiors.
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The Best Theorem I've Ever Proven

NN Z2

Theorem (M. 2020)

The parallelepipeds that make up T (D) have non overlapping interiors.

Furthermore, the translates of T (D) by integer linear combinations of rows of D
form a non-overlapping tiling of R"".

G NN
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The Simplest Example

@ The simplest case is when n=r = 1.
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The Simplest Example

@ The simplest case is when n=r = 1.

o= [3, 4.

@ Here, D is of the form
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The Simplest Example

@ The simplest case is when n=r = 1.

o= [3, 4.

e For k=3, T(D) is shown below.

@ Here, D is of the form
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The Simplest Example

@ The simplest case is when n=r = 1.

1 k
o= 4
@ For k=3, T(D) is shown below. The translates of T(D) by integer linear
combinations of (1, k) and (—k, 1) tile the plane.

@ Here, D is of the form
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The Simplest Example

@ The simplest case is when n=r = 1.

o= [3, 4.

e For k=3, T(D) is shown below.

@ Here, D is of the form

@ For our map, we can associate each point z € Z? with a basis B such that
z € P(B).
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The Simplest Example

@ The simplest case is when n=r = 1.

o= [3, 4.

e For k=3, T(D) is shown below.

@ Here, D is of the form

@ For our map, we can associate each point z € Z? with a basis B such that
z € P(B).

@ To do this, we nudge the points in some generic direction and see where they
end up.
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The Simplest Example

@ The simplest case is when n=r = 1.

o= [3, 4.

e For k=3, T(D) is shown below.

@ Here, D is of the form

@ For our map, we can associate each point z € Z? with a basis B such that
z € P(B).

@ To do this, we nudge the points in some generic direction and see where they
end up.

@ This construction always maps m(B)? points into each P(B).
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Conclusion

Theorem (M. 2020)

For any (r x (r + n)) standard representative matrix D, and any generic direction

vector w € R"*", we constructed a natural map f,, : S(D) — B(D) such that for
every B € B(D), we have |f~1(B)| = m(B)>.
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Conclusion

Theorem (M. 2020)

For any (r x (r + n)) standard representative matrix D, and any generic direction

vector w € R"*", we constructed a natural map f,, : S(D) — B(D) such that for
every B € B(D), we have |f~1(B)| = m(B)>.

@ We did this by first constructing a polytope P(B) for each basis B € B(D)
and combining them to form T (D), which periodically tiles R""" by
translations of D.

Alex McDonough (Brown University)

A Higher-Dimensional Sandpile Map

Based on arxiv.org/abs/2007.09501 13 /15



Conclusion

Theorem (M. 2020)

For any (r x (r + n)) standard representative matrix D, and any generic direction
vector w € R"*", we constructed a natural map f,, : S(D) — B(D) such that for
every B € B(D), we have |f~1(B)| = m(B)>.

@ We did this by first constructing a polytope P(B) for each basis B € B(D)
and combining them to form T (D), which periodically tiles R""" by
translations of D.

@ Then, we shift each lattice point slightly in the direction of w, and see which
P(B) it lands in.
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Conclusion

Theorem (M. 2020)

For any (r x (r + n)) standard representative matrix D, and any generic direction
vector w € R"*", we constructed a natural map f,, : S(D) — B(D) such that for
every B € B(D), we have |f~1(B)| = m(B)>.

@ We did this by first constructing a polytope P(B) for each basis B € B(D)
and combining them to form T (D), which periodically tiles R""" by
translations of D.

@ Then, we shift each lattice point slightly in the direction of w, and see which
P(B) it lands in.

@ These maps specialize to the maps given by Backman, Baker, and Yuen.

x McDonough (Brown University) A Higher-Dimensional Sandpile Map Based on arxiv.org/abs/2007.09501 13 /15



Pretty Pictures

@ Because of the structure of D, we can also tile R" or R” instead of R"".
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Pretty Pictures

@ Because of the structure of D, we can also tile R" or R" instead of R"*".
@ Here are some r = 2 examples computed using Sage.
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Pretty Pictures

@ Because of the structure of D, we can also tile R" or R" instead of R"*".
@ Here are some r = 2 examples computed using Sage.
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Pretty Pictures

@ Because of the structure of D, we can also tile R” or R” instead of R™+".

@ Here are some r = 2 examples computed using Sage.

10 1 3 -4 3 2
01 -3 -2 -1 01
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Pretty Pictures

@ Because of the structure of D, we can also tile R" or R" instead of R"*".
@ Here are some r = 2 examples computed using Sage.

10 1 3 -4 3 2
01 -3 -2 -1 01
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Thanks For Listening!!!
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