A Hopf Monoid on Set Families

Kevin Marshall
University of Kansas
kmarsh729@ku.edu

AMS Fall Central Sectional Meeting Formerly At University of Texas in El Paso

12-13 September 2020

Overview

(1) Hopf Monoids and Antipodes

(2) The Hopf Monoid SetFam

(3) The Submonoid LOI of Lattices of Order Ideals

Punchline: LOI has a simple cancellation-free antipode formula!

Hopf Monoids

A vector species H is a collection of vector spaces $H[I]$ for all finite sets I.

- Associative product ("merge"):

$$
\mu_{\Phi_{1}, \ldots, \Phi_{k}}: H\left[\Phi_{1}\right] \otimes \cdots \otimes H\left[\Phi_{k}\right] \rightarrow H\left[\Phi_{1} \sqcup \cdots \sqcup \Phi_{k}\right]
$$

- Coassociative coproduct ("break"):

$$
\Delta_{\Phi_{1}, \ldots, \Phi_{k}}: H\left[\Phi_{1} \sqcup \cdots \sqcup \Phi_{k}\right] \rightarrow H\left[\Phi_{1}\right] \otimes \cdots \otimes H\left[\Phi_{k}\right]
$$

- Compatibility: "Merging then breaking $=$ breaking then merging"
- Antipode: Takeuchi formula

$$
S(X)=\sum_{\Phi=\Phi_{1}|\cdots| \Phi_{k} \models I}(-1)^{k} \mu_{\Phi}\left(\Delta_{\Phi}(X)\right)
$$

The Braid Arrangement

- $B r_{n}$ consists of the hyperplanes $x_{i}=x_{j}$ in \mathbb{R}^{n}.
- Faces of $B r_{n} \Longleftrightarrow$ set compositions $\Phi=[n]$

The Aguiar-Ardila Hopf Monoid GP

- Aguiar and Ardila studied a Hopf monoid, GP, on generalized permutahedra.
- Matroids form a submonoid.
- Takeuchi formula + braid arrangement $=$ cancellation-free antipode for GP
- Applications
- Inversion of formal power series
- Group of multiplicative characters
- Inversion in the character group
- Reciprocity theorems

SetFam

Grounded set family on E : collection $\mathcal{F} \subseteq 2^{E}$ such that $\emptyset \in \mathcal{F}$ SetFam $[I]=$ vector space spanned by grounded set families on $/$

Proposition

The following operations make SetFam into a Hopf monoid:

$$
\begin{aligned}
\mu_{A, B}\left(\mathcal{F}_{1}, \mathcal{F}_{2}\right) & =\mathcal{F}_{1} * \mathcal{F}_{2} \\
\Delta_{A, B}(\mathcal{F}) & =\left.\mathcal{F}\right|_{A} \otimes \mathcal{F} / A
\end{aligned}
$$

where

$$
\begin{aligned}
\mathcal{F}_{1} * \mathcal{F}_{2} & =\left\{X \cup Y \mid X \in \mathcal{F}_{1}, Y \in \mathcal{F}_{2}\right\} & & \text { ("join") } \\
\left.\mathcal{F}\right|_{A} & =\{X \cap A \mid X \in \mathcal{F}\} & & \text { ("restriction") } \\
\mathcal{F} / A & =\{X \in \mathcal{F} \mid X \cap A=\emptyset\} & & \text { ("contraction") }
\end{aligned}
$$

An Example: Complete Flags

A complete flag on $[n]$ is a set family $\left\{X_{0}, \ldots, X_{n}\right\}$ such that $X_{i-1} \subset X_{i}$ and $\left|X_{i}\right|=i$.

Proposition

Let $\mathcal{G}=\{\emptyset,[1],[2], \ldots,[n]\}$. Then

$$
S(\mathcal{G})=\sum_{B \subseteq[n]} \sum_{\substack{\Phi \models B \\ \text { natural }}}(-1)^{n-|B|+|\Phi|} \mathcal{G}_{\Phi}
$$

where \mathcal{G}_{Φ} is the family of unions of initial segments of blocks of Φ.

Submonoids of SetFam

SetFam

- Int $=\{\mathcal{F}: A, B \in \mathcal{F} \Longrightarrow A \cap B \in \mathcal{F}\}$
- Acc $=$ accessible set families
- Union $=\{\mathcal{F}: A, B \in \mathcal{F} \Longrightarrow A \cup B \in \mathcal{F}\}$
- $\operatorname{Simp}=$ simplicial complexes
- Amat $=$ Union \cap Acc $=$ antimatroids
- Mat = matroids
- LOI $=$ lattices of order ideals

$$
\mathbf{L O I}[I]=\mathbb{C}\langle J(P)=\{\text { order ideals of } P\}| P \text { poset on } I\rangle
$$

Note: $J(P+Q)=J(P) * J(Q)$

A cancellation-free antipode formula

Henceforth, let P be a poset on [n].
Rewrite Takeuchi's formula by grouping like terms:

$$
\begin{aligned}
S(J(P)) & =\sum_{\Phi \models[n]}(-1)^{|\Phi|} \mu_{\Phi}\left(\Delta_{\Phi}(J(P))\right) \\
& =\sum_{Q} J(Q) \underbrace{\left(\sum_{\Phi \in X(Q)}(-1)^{|\Phi|}\right)}_{c_{Q}}
\end{aligned}
$$

where

$$
X(Q)=\left\{\Phi: \mu_{\Phi}\left(\Delta_{\Phi}(J(P))\right)=J(Q)\right\}
$$

(1) Which posets Q arise in the sum?
(2) What does c_{Q} mean topologically?

Terms of the antipode

Let $\Phi=[n]$ and $a, b \in[n]$.
Say b is betrayed by a (w.r.t. Φ) if $a<_{p} b$ and $a<_{\phi} b$. $B\left(\Phi_{i}\right)=$ set of betrayed elements in $\Phi_{i} ; B(\Phi)=\bigcup_{i} B\left(\Phi_{i}\right)$.

Lemma

$$
\mu_{\Phi}\left(\Delta_{\Phi}(J(P))\right)=\mu_{\Phi}\left(\bigotimes_{i=1}^{m} J\left(K_{i}\right)\right)=J\left(K_{1}+\cdots+K_{m}\right)
$$

where K_{i} is the restriction of P to $\Phi_{i} \backslash B\left(\Phi_{i}\right)$.

$X(Q)$ and $X_{a}(Q)$

- A fracturing of P is a disjoint sum of induced subposets of P. A fracturing Q is good if $X(Q) \neq \emptyset$.
- Suppose Q is a good fracturing of P. Let $P \backslash Q=\left\{b_{1}, \ldots, b_{k}\right\}$ and let $a=\left(a_{1}, \ldots, a_{k}\right)$ such that $a_{i}<p b_{i}$. Define

$$
X_{a}(Q)=\left\{\Phi \models[n] \mid \Phi \in X(Q) \text { and } a_{i}<_{\Phi} b_{i} \forall i \in[k]\right\} .
$$

- Observation:

$$
X(Q)=\bigcup_{a} X_{a}(Q)
$$

- Idea: Use inclusion/exclusion to calculate

$$
c_{Q}=\sum_{\Phi \in X(Q)}(-1)^{|\Phi|} .
$$

Topological properties of $X(Q)$ and $X_{a}(Q)$

- $X(Q)$ is an relatively-open polyhedral subfan (not necessarily convex) of the braid fan.
- $X_{a}(Q)$ is a convex relatively-open polyhedral fan.
- If Λ is a collection of betrayal sequences, then $\bigcap_{a \in \Lambda} X_{a}(Q) \neq \emptyset$.
- Replace $X(Q)$ with $X_{a}(Q)$ in the formula for c_{Q}.
- Obtain $\tilde{\chi}\left(\mathbb{B}^{d}\right)-\tilde{\chi}\left(\partial \mathbb{B}^{d}\right)=(-1)^{d}$.
- Apply inclusion/exclusion.

A cancellation-free antipode formula

Theorem

Suppose $J(P) \in \mathbf{L O I}$. Then a cancellation free formula for the antipode is given as a sum over good fracturings of P :

$$
S(J(P))=\sum_{Q}(-1)^{u+k} J(Q)
$$

where u is the number of disjoint summands of Q and $k=|P \backslash Q|$.

- P is a chain: complete flags
- P is an antichain: $S\left(2^{[n]}\right)=(-1)^{n} 2^{[n]}$

Further Directions

- Use the antipode formula to study characters, polynomial invariants, etc. on LOI
- Cancellation-free antipode formula for other submonoids
- Antimatroids?
- Matroids?

References

Thank you!

