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Basics

Notation

® Work with G = (V, E) a multigraph. Order any multiple edges
between two vertices. Choose a root vertex and call it g.
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® Work with G = (V, E) a multigraph. Order any multiple edges
between two vertices. Choose a root vertex and call it g.

® G — e: delete the edge e
® G/e: contract the edge e



Basics

Notation

® Pg.q - set of G-parking functions with respect to g
® 7T¢ - set of spanning trees

® Mg - multiset of monomials of T(G; x,y), the Tutte polynomial



Background

e Dhar [Dha90]
® Biggs [Big99]

Pea ® Cori and Le Borgne [CB03]
/ ® Chebikin and
Tc Pylyavskyy [CP05]
\ e Bernardi [Ber08]
Mc e Kostic and Yan [KY08]

® Baker and Shokrieh [BS13]

Many more



T(Gix,y) = xPye
Te

o> <aFr o

Q>



(+ other closed formulas)
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Definition
Tutte Polynomial

G x _)/) lea ea

(+ other closed formulas)

yT(G —e; x,y) e a loop
T(G;x,y) =1 xT(G/e; x,y) e a bridge
T(G—e;x,y)+ T(G/e; x,y) otherwise
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G-Parking Functions

The outdegree with respect to A C V, denoted outdega(v), is the
number of edges from v € A to vertices not in A.
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Algorithms which produce bijective correspondences

® Dependence on choices
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Algorithms which produce bijective correspondences

® Dependence on choices
® Global edge order.
® Vertex order.
® Something else.
® Compatibility between these choices.
® |n general, no.
® Would like to get all bijections in the triangle using one algorithm,
but do it in a non-arbitrary way.



TGS - Definition

Definition: Given a connected graph G = (V, E) and the set S of all
subgraphs of G containing g as a vertex, a tree growing sequence
(TGS) is a collection of tuples

T ={(S,05: Hs— E(S))}

where S € S, o5 is a function on the set Hs of “rooted” subgraphs of S,
os(T) ¢ E(T), and os(T)U T is connected.






Given a TGS X = {(S,05)} and f : V — {q} — Z.
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Given a TGS X = {(S,05)} and f : V — {q} — Z.
Input: (f,S,U, X, a,B)
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TGS - Algorithm

Given a TGS X = {(S,05)} and F: V — {q} — Z.
Input: (f,S,U, X, a, )
Output: A tree T¢ and monomial xy”
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Output: A tree T¢ and monomial xy”
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At each step, consider e = 05(T), where T = (U, X). Let e = (w, v),
where w € U. We care about f(v) and the nature of e.



TGS - Algorithm

Given a TGS X = {(S,05)} and f : V — {q} — Z.

Input: (f,S,U, X, a, )

Output: A tree T¢ and monomial xy”

Initially: S = G,U ={q}, X ={0} C E(G), a =0, 8 =0.

At each step, consider e = 05(T), where T = (U, X). Let e = (w, v),
where w € U. We care about f(v) and the nature of e.

If f(v) <0, delete e and terminate the algorithm.



TGS - Algorithm

(f757 vaaavﬁ) — (f,S,UU V7XUe,Oé,B)

Next step: os(T).



TGS - Algorithm

(f,S5,U,X,a,8) — (f,S,UUv,XUe,a+1,5)

Next: os(T)



TGS - Algorithm

(f,S, U,X,a,ﬂ) _>(f75_e7 U7X704,ﬁ)

Next: os_o(T).



TGS - Algorithm

(f,5, U, X,a,8) — (f,S—e, U, X,0, 5+ 1)

| >

Next: os_e(T).



TGS - Algorithm

(f,5, U, X,a,8) — (f,S—e, U, X,0, 5+ 1)

| >

Next: os_e(T).
Terminate when Ty = (U, X) spans the connected component of S
containing g.



Start with e = (g, v).

{f S 'PG,q | f(v) = 0} < {'Pc/e’q}

{f €Peqlf(v) 21} «—= {Pscq}
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TGS - Splitting

Start with e = (q, v).

{f S Pcﬁq ‘ f(V) = 0} — {PG/e,q}

{f €Peqlf(v) =1} <= {Pg-eq}

It follows that for any subgraph S and any edge e in S, Ps/. LIPs_¢ is in
1 —1 correspondence with Ps .



TGS - Splitting

Splitting based on the recursive formula for the Tutte polynomial.

yT(G —eix,y) e a loop
T(G;x,y) = xT(G/e; x,y) e a bridge
T(G—ex,y)+ T(G/e;x,y) otherwise
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Splitting based on the recursive formula for the Tutte polynomial.
yT(G —e;x,y) e a loop
T(G;x,y) = xT(G/e; x,y) e a bridge
T(G—ex,y)+ T(G/e;x,y) otherwise
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TGS - Splitting

Splitting based on the recursive formula for the Tutte polynomial.
yT(G —e;x,y) e a loop
T(G;x,y) = xT(G/e; x,y) e a bridge
T(G—ex,y)+ T(G/e;x,y) otherwise
Me=Mg/e UMqg_e, or
MG =X- Mc/e, or

Me=y - Mc_e

Furthermore, we have T¢ <> Tg/e U TG e



TGS - Splitting

Proposition:

Let 7 be the assignments f — T and p be the assignments f > x®y”.
These maps are bijective.



TGS - Splitting

Proposition:

Let 7 be the assignments f — T¢ and p be the assignments f — x®y¥.
These maps are bijective.

P6.q, T, Mc

— T

PG/e,quG/e»MG/e PG—e,quG—e7MG—e
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Compare with Established Algorithms

Dhar’s Burning Algorithm

Start with something simple.

Let O be a global edge order, D the application of Dhar's algorithm to
P .q. and K the composition of D with the bijection Tg — M arising
from internal and external activities.



Compare with Established Algorithms

Dhar’s Burning Algorithm

Start with something simple.

Let O be a global edge order, D the application of Dhar's algorithm to
P .q. and K the composition of D with the bijection Tg — M arising
from internal and external activities.

Proposition: The diagrams commute.

{Oop} —L£5 {5} {Op} L5 =}

L ol
) (0}



Compare with Established Algorithms

Family of Chebikin and Pylyavskyy [CP05]

Something more interesting.

Proper set of tree orders: Given an ordering 7(T) on the vertices of
every subtree T rooted at g, the collection

Mg ={m(T)| T C G a rooted tree} is a proper set of tree orders if
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Family of Chebikin and Pylyavskyy [CP05]

Something more interesting.

Proper set of tree orders: Given an ordering 7(T) on the vertices of
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Consider all vertices
incident to T,.
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Consider all vertices Keep v with

incident to T,. f(v)<#edges to T,.



Bijection ® : Pg o — T for every MMg.

N
0

Consider all vertices Keep v with Keep the edge larger than f(v) other
incident to T,. f(v)<#edges to T,. edges, according to order on T,.



Bijection ® : Pg o — T for every MMg.

N
0

Choose smallest edge
Consider all vertices Keep v with Keep the edge larger than f(v) other according to order on T, U {e}.
incident to T,. f(v)<#edges to T,. edges, according to order on T,.



Compare with Established Algorithms

Family of Chebikin and Pylyavskyy

Define @ : {MNg} — {X}.

The TGS Q(Mg) may consider more edges at each step, and may add
edges in a different order; however, the same spanning tree will be
obtained as for ®.



Compare with Established Algorithms

Family of Chebikin and Pylyavskyy

Define @ : {MNg} — {X}.

The TGS Q(Mg) may consider more edges at each step, and may add
edges in a different order; however, the same spanning tree will be
obtained as for ®.

Proposition: The map 2 is injective and the diagram commutes.

{lle} —— {2}

R lF
{7}



Related Work by Other Authors

® Yuen
® Backman, Baker, Yuen

® Question posed by Hopkins: Classify tie-breaks for Dhar's algorithm.



Thank you!

Preprint: arXiv:2005.06456 (updates recently submitted)
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Tutte for a Zonotopal Tiling

Shrinking Projecting
ra ) \
Z+m s
DV 4
- Z-B,, z
yT*(Z — Bu;x,y) Z-B,=Z|B,

T(Z,x,y) =
( ) {X"Y T*(Z|Bw;x,y)+ T*(Z — By; x,y) otherwise



Tutte for a Zonotopal Tiling

Shrinking Projecting
ra \
@ % ‘ - 2l8,
° P
- Z-B,, z
yT*(Z2 = Bu;x,y) Z-B,=Z|B,

T(Z,x,y) =
( ) {X"Y T*(Z|Bw;x,y)+ T*(Z — By; x,y) otherwise

® Visually, v is the number of zones parallel to B,,; this is the same as
the number of elements of the associated vector configuration Vz
parallel to w (excluding w).



Tutte for a Zonotopal Tiling

Shrinking Projecting
zv| \
- P
- Z-B,, z
Fe(ziny) = {TE = Buix) 28,25,
o xTT*(Z|Bw; x,y) + T*(Z — By; x,y) otherwise

® Visually, v is the number of zones parallel to B,,; this is the same as
the number of elements of the associated vector configuration Vz
parallel to w (excluding w).

® Here, = means as tiled zonotopes.



Zonotope - Cographical Matroid

Given a zonotopal tiling Z, let V% be the matroid with bases subsets of
the configuration which are bases of R?. Thus, bases correspond to tiles.
If the tiling arises from a graph, it is the cographical matroid.

Theorem: Fix a cubical zonotopal tiling Z of Z with associated vector
configuration Vz. Then T*(Z; x,y) is the Tutte polynomial T(V%; x,y).



Further Questions

Question: Are there choices which are compatible in that they make the
diagram below commute?

PG,q

T

{Tiles of Z(G)}

~_l




