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Basics
Notation

• Work with G = (V ,E ) a multigraph. Order any multiple edges
between two vertices. Choose a root vertex and call it q.

• G − e: delete the edge e

• G/e: contract the edge e
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Basics
Notation

• PG ,q - set of G -parking functions with respect to q

• TG - set of spanning trees

• MG - multiset of monomials of T (G ; x , y), the Tutte polynomial



Background

PG ,q

TG

MG

• Dhar [Dha90]

• Biggs [Big99]

• Cori and Le Borgne [CB03]

• Chebikin and
Pylyavskyy [CP05]

• Bernardi [Ber08]

• Kostic and Yan [KY08]

• Baker and Shokrieh [BS13]

Many more



Definition
Tutte Polynomial

T (G ; x , y) =
∑
TG

x iay ea

(+ other closed formulas)

T (G ; x , y) =


yT (G − e; x , y) e a loop

xT (G/e; x , y) e a bridge

T (G − e; x , y) + T (G/e; x , y) otherwise
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Definition
G -Parking Functions

The outdegree with respect to A ⊆ V , denoted outdegA(v), is the
number of edges from v ∈ A to vertices not in A.

A G -parking function is a function f : V (G )−{q} → Z≥0 such that any
subset A ⊆ V − {q} contains a vertex v with 0 ≤ f (v) < outdegA(v).
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Algorithms which produce bijective correspondences

• Dependence on choices

• Global edge order.
• Vertex order.
• Something else.

• Compatibility between these choices.
• In general, no.
• Would like to get all bijections in the triangle using one algorithm,

but do it in a non-arbitrary way.
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TGS - Definition

Definition: Given a connected graph G = (V ,E ) and the set S of all
subgraphs of G containing q as a vertex, a tree growing sequence
(TGS) is a collection of tuples

Σ = {(S , σS : HS → E (S))}

where S ∈ S, σS is a function on the set HS of “rooted” subgraphs of S ,
σS(T ) /∈ E (T ), and σS(T ) ∪ T is connected.





TGS - Algorithm

Given a TGS Σ = {(S , σS)} and f : V − {q} → Z.

Input: (f ,S ,U,X , α, β)

Output: A tree Tf and monomial xαyβ

Initially: S = G ,U = {q}, X = {∅} ⊂ E (G ), α = 0, β = 0.

At each step, consider e = σS(T ), where T = (U,X ). Let e = (w , v),
where w ∈ U. We care about f (v) and the nature of e.

If f (v) < 0, delete e and terminate the algorithm.
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TGS - Algorithm

(f ,S ,U,X , α, β) −→ (f ,S ,U ∪ v ,X ∪ e, α, β)

Next step: σS(T ).



TGS - Algorithm

(f ,S ,U,X , α, β) −→ (f ,S ,U ∪ v ,X ∪ e, α + 1, β)

Next: σS(T )



TGS - Algorithm

(f ,S ,U,X , α, β) −→ (f ,S − e,U,X , α, β)

Next: σS−e(T ).



TGS - Algorithm

(f ,S ,U,X , α, β) −→ (f ,S − e,U,X , α, β + 1)

Next: σS−e(T ).

Terminate when Tf = (U,X ) spans the connected component of S
containing q.
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TGS - Splitting

Start with e = (q, v).

{f ∈ PG ,q | f (v) = 0} ←→ {PG/e,q}

{f ∈ PG ,q | f (v) ≥ 1} ←→ {PG−e,q}

It follows that for any subgraph S and any edge e in S , PS/e tPS−e is in
1− 1 correspondence with PS,q.
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TGS - Splitting

Splitting based on the recursive formula for the Tutte polynomial.

T (G ; x , y) =


yT (G − e; x , y) e a loop

xT (G/e; x , y) e a bridge

T (G − e; x , y) + T (G/e; x , y) otherwise

MG =MG/e tMG−e , or

MG = x · MG/e , or

MG = y · MG−e

Furthermore, we have TG ↔ TG/e t TG−e
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TGS - Splitting

Proposition:

Let τ be the assignments f 7→ Tf and ρ be the assignments f 7→ xαyβ .
These maps are bijective.

PG ,q, TG ,MG

PG/e,q, TG/e ,MG/e PG−e,q, TG−e ,MG−e
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Compare with Established Algorithms
Dhar’s Burning Algorithm

Start with something simple.

Let OE be a global edge order, D the application of Dhar’s algorithm to
PG ,q, and K the composition of D with the bijection TG →MG arising
from internal and external activities.

Proposition: The diagrams commute.
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Compare with Established Algorithms
Family of Chebikin and Pylyavskyy [CP05]

Something more interesting.

Proper set of tree orders: Given an ordering π(T ) on the vertices of
every subtree T rooted at q, the collection
ΠG = {π(T ) | T ⊂ G a rooted tree} is a proper set of tree orders if

• When the overlap of T and T ′ contains a rooted tree, and i , j are
vertices in this overlap, then i <π(T ) j ⇐⇒ i <π(T ′) j

• A directed edge (u, v) ∈ T means v < u in π(T ).
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Compare with Established Algorithms
Family of Chebikin and Pylyavskyy

Define Ω : {ΠG} → {Σ}.

The TGS Ω(ΠG ) may consider more edges at each step, and may add
edges in a different order; however, the same spanning tree will be
obtained as for Φ.

Proposition:The map Ω is injective and the diagram commutes.
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Related Work by Other Authors

• Yuen

• Backman, Baker, Yuen

• Question posed by Hopkins: Classify tie-breaks for Dhar’s algorithm.



Thank you!
Preprint: arXiv:2005.06456 (updates recently submitted)
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Tutte for a Zonotopal Tiling

T ∗(Z; x , y) =

{
yT ∗(Z − Bw ; x , y) Z − Bw

∼= Z|Bw

xγT ∗(Z|Bw ; x , y) + T ∗(Z − Bw ; x , y) otherwise

• Visually, γ is the number of zones parallel to Bw ; this is the same as
the number of elements of the associated vector configuration VZ
parallel to w (excluding w).

• Here, ∼= means as tiled zonotopes.



Tutte for a Zonotopal Tiling

T ∗(Z; x , y) =

{
yT ∗(Z − Bw ; x , y) Z − Bw

∼= Z|Bw

xγT ∗(Z|Bw ; x , y) + T ∗(Z − Bw ; x , y) otherwise

• Visually, γ is the number of zones parallel to Bw ; this is the same as
the number of elements of the associated vector configuration VZ
parallel to w (excluding w).

• Here, ∼= means as tiled zonotopes.



Tutte for a Zonotopal Tiling

T ∗(Z; x , y) =

{
yT ∗(Z − Bw ; x , y) Z − Bw

∼= Z|Bw

xγT ∗(Z|Bw ; x , y) + T ∗(Z − Bw ; x , y) otherwise

• Visually, γ is the number of zones parallel to Bw ; this is the same as
the number of elements of the associated vector configuration VZ
parallel to w (excluding w).

• Here, ∼= means as tiled zonotopes.



Zonotope - Cographical Matroid

Given a zonotopal tiling Z, let V∗Z be the matroid with bases subsets of
the configuration which are bases of Rd . Thus, bases correspond to tiles.
If the tiling arises from a graph, it is the cographical matroid.

Theorem: Fix a cubical zonotopal tiling Z of Z with associated vector
configuration VZ . Then T ∗(Z; x , y) is the Tutte polynomial T (V∗Z ; x , y).



Further Questions

Question: Are there choices which are compatible in that they make the
diagram below commute?


