The Tree Growing Sequence

Carrie Frizzell

Kansas State UNIVERSITY

AMS Central Sectional Meeting
September 12-13, 2020

Basics

Notation

- Work with $G=(V, E)$ a multigraph. Order any multiple edges between two vertices. Choose a root vertex and call it q.

Basics

Notation

- Work with $G=(V, E)$ a multigraph. Order any multiple edges between two vertices. Choose a root vertex and call it q.
- $G-e$: delete the edge e
- G / e : contract the edge e

Basics

Notation

- $\mathcal{P}_{G, q}$ - set of G-parking functions with respect to q
- \mathcal{T}_{G} - set of spanning trees
- \mathcal{M}_{G} - multiset of monomials of $T(G ; x, y)$, the Tutte polynomial

Background

- Dhar [Dha90]
- Biggs [Big99]
- Cori and Le Borgne [CB03]
- Chebikin and Pylyavskyy [CP05]
- Bernardi [Ber08]
- Kostic and Yan [KY08]
- Baker and Shokrieh [BS13]

Many more

Definition

Tutte Polynomial

$$
T(G ; x, y)=\sum_{\mathcal{T}_{G}} x^{i a} y^{e a}
$$

Definition

Tutte Polynomial

$$
T(G ; x, y)=\sum_{\mathcal{T}_{G}} x^{i a} y^{e a}
$$

(+ other closed formulas)

Definition

Tutte Polynomial

$$
T(G ; x, y)=\sum_{\mathcal{T}_{G}} x^{i a} y^{e a}
$$

(+ other closed formulas)

$$
T(G ; x, y)= \begin{cases}y T(G-e ; x, y) & e \text { a loop } \\ x T(G / e ; x, y) & e \text { a bridge } \\ T(G-e ; x, y)+T(G / e ; x, y) & \text { otherwise }\end{cases}
$$

Definition

G-Parking Functions
The outdegree with respect to $A \subseteq V$, denoted outdeg $A(v)$, is the number of edges from $v \in A$ to vertices not in A.

Definition

G-Parking Functions

The outdegree with respect to $A \subseteq V$, denoted outdeg $A(v)$, is the number of edges from $v \in A$ to vertices not in A.

A G-parking function is a function $f: V(G)-\{q\} \rightarrow \mathbb{Z}_{\geq 0}$ such that any subset $A \subseteq V-\{q\}$ contains a vertex v with $0 \leq f(v)<$ outdeg $_{A}(v)$.

Definition

G-Parking Functions

The outdegree with respect to $A \subseteq V$, denoted outdeg $_{A}(v)$, is the number of edges from $v \in A$ to vertices not in A.

A G-parking function is a function $f: V(G)-\{q\} \rightarrow \mathbb{Z}_{\geq 0}$ such that any subset $A \subseteq V-\{q\}$ contains a vertex v with $0 \leq f(v)<$ outdeg $_{A}(v)$.

outdegree $_{A}(v)=5$

Not G-parking

G-parking

Algorithms which produce bijective correspondences

- Dependence on choices

Algorithms which produce bijective correspondences

- Dependence on choices
- Global edge order.
- Vertex order.
- Something else.

Algorithms which produce bijective correspondences

- Dependence on choices
- Global edge order.
- Vertex order.
- Something else.
- Compatibility between these choices.
- In general, no.
- Would like to get all bijections in the triangle using one algorithm, but do it in a non-arbitrary way.

TGS - Definition

Definition: Given a connected graph $G=(V, E)$ and the set \mathcal{S} of all subgraphs of G containing q as a vertex, a tree growing sequence (TGS) is a collection of tuples

$$
\Sigma=\left\{\left(S, \sigma_{S}: \mathcal{H}_{S} \rightarrow E(S)\right)\right\}
$$

where $S \in \mathcal{S}, \sigma_{S}$ is a function on the set \mathcal{H}_{S} of "rooted" subgraphs of S, $\sigma_{S}(T) \notin E(T)$, and $\sigma_{S}(T) \cup T$ is connected.

$$
\begin{aligned}
& \Delta\left(a \rightarrow \Delta \Delta \Delta_{0} \rightarrow D_{0}\right) \\
& \Delta(: \rightarrow / \rightarrow \Lambda \rightarrow \Delta) \quad \Lambda(: \rightarrow / \rightarrow \Lambda)
\end{aligned}
$$

TGS - Algorithm

Given a TGS $\Sigma=\left\{\left(S, \sigma_{S}\right)\right\}$ and $f: V-\{q\} \rightarrow \mathbb{Z}$.

TGS - Algorithm

Given a TGS $\Sigma=\left\{\left(S, \sigma_{S}\right)\right\}$ and $f: V-\{q\} \rightarrow \mathbb{Z}$.
Input: $(f, S, U, X, \alpha, \beta)$

TGS - Algorithm

Given a TGS $\Sigma=\left\{\left(S, \sigma_{S}\right)\right\}$ and $f: V-\{q\} \rightarrow \mathbb{Z}$.
Input: $(f, S, U, X, \alpha, \beta)$
Output: A tree T_{f} and monomial $x^{\alpha} y^{\beta}$

TGS - Algorithm

Given a TGS $\Sigma=\left\{\left(S, \sigma_{S}\right)\right\}$ and $f: V-\{q\} \rightarrow \mathbb{Z}$.
Input: $(f, S, U, X, \alpha, \beta)$
Output: A tree T_{f} and monomial $x^{\alpha} y^{\beta}$
Initially: $S=G, U=\{q\}, X=\{\emptyset\} \subset E(G), \alpha=0, \beta=0$.

TGS - Algorithm

Given a TGS $\Sigma=\left\{\left(S, \sigma_{S}\right)\right\}$ and $f: V-\{q\} \rightarrow \mathbb{Z}$.
Input: $(f, S, U, X, \alpha, \beta)$
Output: A tree T_{f} and monomial $x^{\alpha} y^{\beta}$
Initially: $S=G, U=\{q\}, X=\{\emptyset\} \subset E(G), \alpha=0, \beta=0$.
At each step, consider $e=\sigma_{S}(T)$, where $T=(U, X)$. Let $e=(w, v)$, where $w \in U$. We care about $f(v)$ and the nature of e.

TGS - Algorithm

Given a TGS $\Sigma=\left\{\left(S, \sigma_{S}\right)\right\}$ and $f: V-\{q\} \rightarrow \mathbb{Z}$.
Input: $(f, S, U, X, \alpha, \beta)$
Output: A tree T_{f} and monomial $x^{\alpha} y^{\beta}$
Initially: $S=G, U=\{q\}, X=\{\emptyset\} \subset E(G), \alpha=0, \beta=0$.
At each step, consider $e=\sigma_{S}(T)$, where $T=(U, X)$. Let $e=(w, v)$, where $w \in U$. We care about $f(v)$ and the nature of e.
If $f(v)<0$, delete e and terminate the algorithm.

TGS - Algorithm

$$
(f, S, \cup, X, \alpha, \beta) \longrightarrow(f, S, \cup \cup v, X \cup e, \alpha, \beta)
$$

Next step: $\sigma_{S}(T)$.

TGS - Algorithm

$$
(f, S, \cup, X, \alpha, \beta) \longrightarrow(f, S, \cup \cup v, X \cup e, \alpha+1, \beta)
$$

Next: $\sigma_{S}(T)$

TGS - Algorithm

$$
(f, S, U, X, \alpha, \beta) \longrightarrow(f, S-e, U, X, \alpha, \beta)
$$

Next: $\sigma_{S_{-e}}(T)$.

TGS - Algorithm

$$
(f, S, U, X, \alpha, \beta) \longrightarrow(f, S-e, U, X, \alpha, \beta+1)
$$

Next: $\sigma_{S-e}(T)$.

TGS - Algorithm

$$
(f, S, U, X, \alpha, \beta) \longrightarrow(f, S-e, U, X, \alpha, \beta+1)
$$

Next: $\sigma_{S_{-e}}(T)$.
Terminate when $T_{f}=(U, X)$ spans the connected component of S containing q.

TGS - Splitting

Start with $e=(q, v)$.

$$
\left\{f \in \mathcal{P}_{G, q} \mid f(v)=0\right\} \longleftrightarrow\left\{\mathcal{P}_{G / e, q}\right\}
$$

$$
\left\{f \in \mathcal{P}_{G, q} \mid f(v) \geq 1\right\} \longleftrightarrow\left\{\mathcal{P}_{G-e, q}\right\}
$$

TGS - Splitting

Start with $e=(q, v)$.

$$
\begin{aligned}
& \left\{f \in \mathcal{P}_{G, q} \mid f(v)=0\right\} \longleftrightarrow\left\{\mathcal{P}_{G / e, q}\right\} \\
& \left\{f \in \mathcal{P}_{G, q} \mid f(v) \geq 1\right\} \longleftrightarrow\left\{\mathcal{P}_{G-e, q}\right\}
\end{aligned}
$$

It follows that for any subgraph S and any edge e in $S, \mathcal{P}_{S / e} \sqcup \mathcal{P}_{S_{-e}}$ is in 1 - 1 correspondence with $P_{S, q}$.

TGS - Splitting

Splitting based on the recursive formula for the Tutte polynomial.

$$
T(G ; x, y)= \begin{cases}y T(G-e ; x, y) & e \text { a loop } \\ x T(G / e ; x, y) & e \text { a bridge } \\ T(G-e ; x, y)+T(G / e ; x, y) & \text { otherwise }\end{cases}
$$

TGS - Splitting

Splitting based on the recursive formula for the Tutte polynomial.

$$
\begin{aligned}
T(G ; x, y)= & \begin{cases}y T(G-e ; x, y) & e \text { a loop } \\
x T(G / e ; x, y) & e \text { a bridge } \\
T(G-e ; x, y)+T(G / e ; x, y) & \text { otherwise }\end{cases} \\
& \mathcal{M}_{G}=\mathcal{M}_{G / e} \sqcup \mathcal{M}_{G-e}, \text { or }
\end{aligned}
$$

TGS - Splitting

Splitting based on the recursive formula for the Tutte polynomial.

$$
\begin{gathered}
T(G ; x, y)= \begin{cases}y T(G-e ; x, y) & e \text { a loop } \\
x T(G / e ; x, y) & e \text { a bridge } \\
T(G-e ; x, y)+T(G / e ; x, y) & \text { otherwise }\end{cases} \\
\mathcal{M}_{G}=\mathcal{M}_{G / e} \sqcup \mathcal{M}_{G-e}, \text { or } \\
\mathcal{M}_{G}=x \cdot \mathcal{M}_{G / e}, \text { or }
\end{gathered}
$$

TGS - Splitting

Splitting based on the recursive formula for the Tutte polynomial.

$$
\begin{gathered}
T(G ; x, y)= \begin{cases}y T(G-e ; x, y) & e \text { a loop } \\
x T(G / e ; x, y) & e \text { a bridge } \\
T(G-e ; x, y)+T(G / e ; x, y) & \text { otherwise }\end{cases} \\
\mathcal{M}_{G}=\mathcal{M}_{G / e} \sqcup \mathcal{M}_{G-e}, \text { or } \\
\mathcal{M}_{G}=x \cdot \mathcal{M}_{G / e}, \text { or } \\
\mathcal{M}_{G}=y \cdot \mathcal{M}_{G-e}
\end{gathered}
$$

TGS - Splitting

Splitting based on the recursive formula for the Tutte polynomial.

$$
\begin{gathered}
T(G ; x, y)= \begin{cases}y T(G-e ; x, y) & e \text { a loop } \\
x T(G / e ; x, y) & e \text { a bridge } \\
T(G-e ; x, y)+T(G / e ; x, y) & \text { otherwise }\end{cases} \\
\mathcal{M}_{G}=\mathcal{M}_{G / e} \sqcup \mathcal{M}_{G-e}, \text { or } \\
\mathcal{M}_{G}=x \cdot \mathcal{M}_{G / e}, \text { or } \\
\mathcal{M}_{G}=y \cdot \mathcal{M}_{G-e}
\end{gathered}
$$

Furthermore, we have $\mathcal{T}_{G} \leftrightarrow \mathcal{T}_{G / e} \sqcup \mathcal{T}_{G-e}$

TGS - Splitting

Proposition:

Let τ be the assignments $f \mapsto T_{f}$ and ρ be the assignments $f \mapsto x^{\alpha} y^{\beta}$. These maps are bijective.

TGS - Splitting

Proposition:

Let τ be the assignments $f \mapsto T_{f}$ and ρ be the assignments $f \mapsto x^{\alpha} y^{\beta}$. These maps are bijective.

TGS - Splitting

$\begin{array}{lllllll} & \vdots & \vdots & \vdots & \vdots & \vdots & \downarrow\end{array}$

Compare with Established Algorithms

Dhar's Burning Algorithm

Start with something simple.
Let O_{E} be a global edge order, D the application of Dhar's algorithm to $\mathcal{P}_{G, q}$, and K the composition of D with the bijection $\mathcal{T}_{G} \rightarrow \mathcal{M}_{G}$ arising from internal and external activities.

Compare with Established Algorithms

Dhar's Burning Algorithm

Start with something simple.
Let O_{E} be a global edge order, D the application of Dhar's algorithm to $\mathcal{P}_{G, q}$, and K the composition of D with the bijection $\mathcal{T}_{G} \rightarrow \mathcal{M}_{G}$ arising from internal and external activities.
Proposition: The diagrams commute.

Compare with Established Algorithms

Family of Chebikin and Pylyavskyy [CP05]

Something more interesting.
Proper set of tree orders: Given an ordering $\pi(T)$ on the vertices of every subtree T rooted at q, the collection $\Pi_{G}=\{\pi(T) \mid T \subset G$ a rooted tree $\}$ is a proper set of tree orders if

Compare with Established Algorithms

Family of Chebikin and Pylyavskyy [CP05]

Something more interesting.
Proper set of tree orders: Given an ordering $\pi(T)$ on the vertices of every subtree T rooted at q, the collection
$\Pi_{G}=\{\pi(T) \mid T \subset G$ a rooted tree $\}$ is a proper set of tree orders if

- When the overlap of T and T^{\prime} contains a rooted tree, and i, j are vertices in this overlap, then $i<_{\pi(T)} j \Longleftrightarrow i<_{\pi\left(T^{\prime}\right)} j$

Compare with Established Algorithms

Family of Chebikin and Pylyavskyy [CP05]

Something more interesting.
Proper set of tree orders: Given an ordering $\pi(T)$ on the vertices of every subtree T rooted at q, the collection $\Pi_{G}=\{\pi(T) \mid T \subset G$ a rooted tree $\}$ is a proper set of tree orders if

- When the overlap of T and T^{\prime} contains a rooted tree, and i, j are vertices in this overlap, then $i<_{\pi(T)} j \Longleftrightarrow i<_{\pi\left(T^{\prime}\right)} j$
- A directed edge $(u, v) \in T$ means $v<u$ in $\pi(T)$.

Compare with Established Algorithms

Family of Chebikin and Pylyavskyy [CP05]

Something more interesting.
Proper set of tree orders: Given an ordering $\pi(T)$ on the vertices of every subtree T rooted at q, the collection
$\Pi_{G}=\{\pi(T) \mid T \subset G$ a rooted tree $\}$ is a proper set of tree orders if

- When the overlap of T and T^{\prime} contains a rooted tree, and i, j are vertices in this overlap, then $i<_{\pi(T)} j \Longleftrightarrow i<_{\pi\left(T^{\prime}\right)} j$
- A directed edge $(u, v) \in T$ means $v<u$ in $\pi(T)$.

Not Proper

Compare with Established Algorithms

Family of Chebikin and Pylyavskyy [CP05]

Something more interesting.
Proper set of tree orders: Given an ordering $\pi(T)$ on the vertices of every subtree T rooted at q, the collection
$\Pi_{G}=\{\pi(T) \mid T \subset G$ a rooted tree $\}$ is a proper set of tree orders if

- When the overlap of T and T^{\prime} contains a rooted tree, and i, j are vertices in this overlap, then $i<_{\pi(T)} j \Longleftrightarrow i<_{\pi\left(T^{\prime}\right)} j$
- A directed edge $(u, v) \in T$ means $v<u$ in $\pi(T)$.

Not Proper

Proper

Bijection $\Phi: \mathcal{P}_{G, q} \rightarrow \mathcal{T}_{G}$ for every Π_{G}.

Consider all vertices incident to T_{k}.

Bijection $\Phi: \mathcal{P}_{G, q} \rightarrow \mathcal{T}_{G}$ for every Π_{G}.

Consider all vertices incident to T_{k}.

Keep v with
$f(v)<\# e d g e s$ to T_{k}.

Bijection $\Phi: \mathcal{P}_{G, q} \rightarrow \mathcal{T}_{G}$ for every Π_{G}.

Consider all vertices incident to T_{k}.

Keep v with
$f(v)<\# e d g e s$ to T_{k}.

Keep the edge larger than $f(v)$ other edges, according to order on T_{k}.

Bijection $\Phi: \mathcal{P}_{G, q} \rightarrow \mathcal{T}_{G}$ for every Π_{G}.

Consider all vertices incident to T_{k}.

Keep v with
$f(v)<\#$ edges to T_{k}.

Keep the edge larger than $f(v)$ other edges, according to order on T_{k}.

Choose smallest edge according to order on $\mathrm{T}_{\mathrm{k}} \cup\{\mathrm{e}\}$.

Compare with Established Algorithms

Family of Chebikin and Pylyavskyy

Define $\Omega:\left\{\Pi_{G}\right\} \rightarrow\{\Sigma\}$.
The TGS $\Omega\left(\Pi_{G}\right)$ may consider more edges at each step, and may add edges in a different order; however, the same spanning tree will be obtained as for Φ.

Compare with Established Algorithms

Family of Chebikin and Pylyavskyy

Define $\Omega:\left\{\Pi_{G}\right\} \rightarrow\{\Sigma\}$.
The TGS $\Omega\left(\Pi_{G}\right)$ may consider more edges at each step, and may add edges in a different order; however, the same spanning tree will be obtained as for Φ.

Proposition: The map Ω is injective and the diagram commutes.

Related Work by Other Authors

- Yuen
- Backman, Baker, Yuen
- Question posed by Hopkins: Classify tie-breaks for Dhar's algorithm.

Thank you!
Preprint: arXiv:2005.06456 (updates recently submitted)

References I

目 Olivier Bernardi，A characterization of the Tutte polynomial via combinatorial embeddings，Annals of Combinatorics 12 （2008）， no．2，139－153， 14 pages．
围 N．L．Biggs，Chip－firing and the critical group of a graph，Journal of Algebraic Combinatorics 9 （1999），no．1，25－45．
R Matthew Baker and Farbod Shokrieh，Chip－firing games，potential theory on graphs，and spanning trees，Journal of Combinatorial Theory，Series A 120 （2013），no．1， 164 － 182.
R－in Robert Cori and Yvan Le Borgne，The sand－pile model and tutte polynomials，Advances in Applied Mathematics 30 （2003），no．1， 44 － 52.
固 Denis Chebikin and Pavlo Pylyavskyy，A family of bijections between g－parking functions and spanning trees，Journal of Combinatorial Theory，Series A 110 （2005），no．1， $31-41$.

References II

䡒 Deepak Dhar, Self-organized critical state of sandpile automaton models, Phys. Rev. Lett. 64 (1990), 1613-1616.
Dimitrije Kostić and Catherine H. Yan, Multiparking functions, graph searching, and the tutte polynomial, Advances in Applied Mathematics 40 (2008), no. 1, 73 - 97.

Tutte for a Zonotopal Tiling

$$
T^{*}(\mathcal{Z} ; x, y)= \begin{cases}y T^{*}\left(\mathcal{Z}-B_{w} ; x, y\right) & \mathcal{Z}-B_{w} \cong \mathcal{Z} \mid B_{w} \\ x^{\gamma} T^{*}\left(\mathcal{Z} \mid B_{w} ; x, y\right)+T^{*}\left(\mathcal{Z}-B_{w} ; x, y\right) & \text { otherwise }\end{cases}
$$

Tutte for a Zonotopal Tiling

$T^{*}(\mathcal{Z} ; x, y)= \begin{cases}y T^{*}\left(\mathcal{Z}-B_{w} ; x, y\right) & \mathcal{Z}-B_{w} \cong \mathcal{Z} \mid B_{w} \\ x^{\gamma} T^{*}\left(\mathcal{Z} \mid B_{w} ; x, y\right)+T^{*}\left(\mathcal{Z}-B_{w} ; x, y\right) & \text { otherwise }\end{cases}$

- Visually, γ is the number of zones parallel to B_{w}; this is the same as the number of elements of the associated vector configuration $\mathcal{V}_{\mathcal{Z}}$ parallel to w (excluding w).

Tutte for a Zonotopal Tiling

$T^{*}(\mathcal{Z} ; x, y)= \begin{cases}y T^{*}\left(\mathcal{Z}-B_{w} ; x, y\right) & \mathcal{Z}-B_{w} \cong \mathcal{Z} \mid B_{w} \\ x^{\gamma} T^{*}\left(\mathcal{Z} \mid B_{w} ; x, y\right)+T^{*}\left(\mathcal{Z}-B_{w} ; x, y\right) & \text { otherwise }\end{cases}$

- Visually, γ is the number of zones parallel to B_{w}; this is the same as the number of elements of the associated vector configuration $\mathcal{V}_{\mathcal{Z}}$ parallel to w (excluding w).
- Here, \cong means as tiled zonotopes.

Zonotope - Cographical Matroid

Given a zonotopal tiling \mathcal{Z}, let $\mathcal{V}_{\mathcal{Z}}^{*}$ be the matroid with bases subsets of the configuration which are bases of \mathbb{R}^{d}. Thus, bases correspond to tiles. If the tiling arises from a graph, it is the cographical matroid.

Theorem: Fix a cubical zonotopal tiling \mathcal{Z} of Z with associated vector configuration $\vee_{\mathcal{Z}}$. Then $T^{*}(\mathcal{Z} ; x, y)$ is the Tutte polynomial $T\left(\mathcal{V}_{\mathcal{Z}}^{*} ; x, y\right)$.

Further Questions

Question: Are there choices which are compatible in that they make the diagram below commute?

