
The Tree Growing Sequence
Carrie Frizzell

AMS Central Sectional Meeting
September 12-13, 2020



Basics
Notation

• Work with G = (V ,E ) a multigraph. Order any multiple edges
between two vertices. Choose a root vertex and call it q.

• G − e: delete the edge e

• G/e: contract the edge e



Basics
Notation

• Work with G = (V ,E ) a multigraph. Order any multiple edges
between two vertices. Choose a root vertex and call it q.

• G − e: delete the edge e

• G/e: contract the edge e



Basics
Notation

• PG ,q - set of G -parking functions with respect to q

• TG - set of spanning trees

• MG - multiset of monomials of T (G ; x , y), the Tutte polynomial



Background

PG ,q

TG

MG

• Dhar [Dha90]

• Biggs [Big99]

• Cori and Le Borgne [CB03]

• Chebikin and
Pylyavskyy [CP05]

• Bernardi [Ber08]

• Kostic and Yan [KY08]

• Baker and Shokrieh [BS13]

Many more



Definition
Tutte Polynomial

T (G ; x , y) =
∑
TG

x iay ea

(+ other closed formulas)

T (G ; x , y) =


yT (G − e; x , y) e a loop

xT (G/e; x , y) e a bridge

T (G − e; x , y) + T (G/e; x , y) otherwise



Definition
Tutte Polynomial

T (G ; x , y) =
∑
TG

x iay ea

(+ other closed formulas)

T (G ; x , y) =


yT (G − e; x , y) e a loop

xT (G/e; x , y) e a bridge

T (G − e; x , y) + T (G/e; x , y) otherwise



Definition
Tutte Polynomial

T (G ; x , y) =
∑
TG

x iay ea

(+ other closed formulas)

T (G ; x , y) =


yT (G − e; x , y) e a loop

xT (G/e; x , y) e a bridge

T (G − e; x , y) + T (G/e; x , y) otherwise



Definition
G -Parking Functions

The outdegree with respect to A ⊆ V , denoted outdegA(v), is the
number of edges from v ∈ A to vertices not in A.

A G -parking function is a function f : V (G )−{q} → Z≥0 such that any
subset A ⊆ V − {q} contains a vertex v with 0 ≤ f (v) < outdegA(v).



Definition
G -Parking Functions

The outdegree with respect to A ⊆ V , denoted outdegA(v), is the
number of edges from v ∈ A to vertices not in A.

A G -parking function is a function f : V (G )−{q} → Z≥0 such that any
subset A ⊆ V − {q} contains a vertex v with 0 ≤ f (v) < outdegA(v).



Definition
G -Parking Functions

The outdegree with respect to A ⊆ V , denoted outdegA(v), is the
number of edges from v ∈ A to vertices not in A.

A G -parking function is a function f : V (G )−{q} → Z≥0 such that any
subset A ⊆ V − {q} contains a vertex v with 0 ≤ f (v) < outdegA(v).



Algorithms which produce bijective correspondences

• Dependence on choices

• Global edge order.
• Vertex order.
• Something else.

• Compatibility between these choices.
• In general, no.
• Would like to get all bijections in the triangle using one algorithm,

but do it in a non-arbitrary way.



Algorithms which produce bijective correspondences

• Dependence on choices
• Global edge order.
• Vertex order.
• Something else.

• Compatibility between these choices.
• In general, no.
• Would like to get all bijections in the triangle using one algorithm,

but do it in a non-arbitrary way.



Algorithms which produce bijective correspondences

• Dependence on choices
• Global edge order.
• Vertex order.
• Something else.

• Compatibility between these choices.
• In general, no.
• Would like to get all bijections in the triangle using one algorithm,

but do it in a non-arbitrary way.



TGS - Definition

Definition: Given a connected graph G = (V ,E ) and the set S of all
subgraphs of G containing q as a vertex, a tree growing sequence
(TGS) is a collection of tuples

Σ = {(S , σS : HS → E (S))}

where S ∈ S, σS is a function on the set HS of “rooted” subgraphs of S ,
σS(T ) /∈ E (T ), and σS(T ) ∪ T is connected.





TGS - Algorithm

Given a TGS Σ = {(S , σS)} and f : V − {q} → Z.

Input: (f ,S ,U,X , α, β)

Output: A tree Tf and monomial xαyβ

Initially: S = G ,U = {q}, X = {∅} ⊂ E (G ), α = 0, β = 0.

At each step, consider e = σS(T ), where T = (U,X ). Let e = (w , v),
where w ∈ U. We care about f (v) and the nature of e.

If f (v) < 0, delete e and terminate the algorithm.



TGS - Algorithm

Given a TGS Σ = {(S , σS)} and f : V − {q} → Z.

Input: (f ,S ,U,X , α, β)

Output: A tree Tf and monomial xαyβ

Initially: S = G ,U = {q}, X = {∅} ⊂ E (G ), α = 0, β = 0.

At each step, consider e = σS(T ), where T = (U,X ). Let e = (w , v),
where w ∈ U. We care about f (v) and the nature of e.

If f (v) < 0, delete e and terminate the algorithm.



TGS - Algorithm

Given a TGS Σ = {(S , σS)} and f : V − {q} → Z.

Input: (f ,S ,U,X , α, β)

Output: A tree Tf and monomial xαyβ

Initially: S = G ,U = {q}, X = {∅} ⊂ E (G ), α = 0, β = 0.

At each step, consider e = σS(T ), where T = (U,X ). Let e = (w , v),
where w ∈ U. We care about f (v) and the nature of e.

If f (v) < 0, delete e and terminate the algorithm.



TGS - Algorithm

Given a TGS Σ = {(S , σS)} and f : V − {q} → Z.

Input: (f ,S ,U,X , α, β)

Output: A tree Tf and monomial xαyβ

Initially: S = G ,U = {q}, X = {∅} ⊂ E (G ), α = 0, β = 0.

At each step, consider e = σS(T ), where T = (U,X ). Let e = (w , v),
where w ∈ U. We care about f (v) and the nature of e.

If f (v) < 0, delete e and terminate the algorithm.



TGS - Algorithm

Given a TGS Σ = {(S , σS)} and f : V − {q} → Z.

Input: (f ,S ,U,X , α, β)

Output: A tree Tf and monomial xαyβ

Initially: S = G ,U = {q}, X = {∅} ⊂ E (G ), α = 0, β = 0.

At each step, consider e = σS(T ), where T = (U,X ). Let e = (w , v),
where w ∈ U. We care about f (v) and the nature of e.

If f (v) < 0, delete e and terminate the algorithm.



TGS - Algorithm

Given a TGS Σ = {(S , σS)} and f : V − {q} → Z.

Input: (f ,S ,U,X , α, β)

Output: A tree Tf and monomial xαyβ

Initially: S = G ,U = {q}, X = {∅} ⊂ E (G ), α = 0, β = 0.

At each step, consider e = σS(T ), where T = (U,X ). Let e = (w , v),
where w ∈ U. We care about f (v) and the nature of e.

If f (v) < 0, delete e and terminate the algorithm.



TGS - Algorithm

(f ,S ,U,X , α, β) −→ (f ,S ,U ∪ v ,X ∪ e, α, β)

Next step: σS(T ).



TGS - Algorithm

(f ,S ,U,X , α, β) −→ (f ,S ,U ∪ v ,X ∪ e, α + 1, β)

Next: σS(T )



TGS - Algorithm

(f ,S ,U,X , α, β) −→ (f ,S − e,U,X , α, β)

Next: σS−e(T ).



TGS - Algorithm

(f ,S ,U,X , α, β) −→ (f ,S − e,U,X , α, β + 1)

Next: σS−e(T ).

Terminate when Tf = (U,X ) spans the connected component of S
containing q.



TGS - Algorithm

(f ,S ,U,X , α, β) −→ (f ,S − e,U,X , α, β + 1)

Next: σS−e(T ).

Terminate when Tf = (U,X ) spans the connected component of S
containing q.



TGS - Splitting

Start with e = (q, v).

{f ∈ PG ,q | f (v) = 0} ←→ {PG/e,q}

{f ∈ PG ,q | f (v) ≥ 1} ←→ {PG−e,q}

It follows that for any subgraph S and any edge e in S , PS/e tPS−e is in
1− 1 correspondence with PS,q.



TGS - Splitting

Start with e = (q, v).

{f ∈ PG ,q | f (v) = 0} ←→ {PG/e,q}

{f ∈ PG ,q | f (v) ≥ 1} ←→ {PG−e,q}

It follows that for any subgraph S and any edge e in S , PS/e tPS−e is in
1− 1 correspondence with PS,q.



TGS - Splitting

Splitting based on the recursive formula for the Tutte polynomial.

T (G ; x , y) =


yT (G − e; x , y) e a loop

xT (G/e; x , y) e a bridge

T (G − e; x , y) + T (G/e; x , y) otherwise

MG =MG/e tMG−e , or

MG = x · MG/e , or

MG = y · MG−e

Furthermore, we have TG ↔ TG/e t TG−e



TGS - Splitting

Splitting based on the recursive formula for the Tutte polynomial.

T (G ; x , y) =


yT (G − e; x , y) e a loop

xT (G/e; x , y) e a bridge

T (G − e; x , y) + T (G/e; x , y) otherwise

MG =MG/e tMG−e , or

MG = x · MG/e , or

MG = y · MG−e

Furthermore, we have TG ↔ TG/e t TG−e



TGS - Splitting

Splitting based on the recursive formula for the Tutte polynomial.

T (G ; x , y) =


yT (G − e; x , y) e a loop

xT (G/e; x , y) e a bridge

T (G − e; x , y) + T (G/e; x , y) otherwise

MG =MG/e tMG−e , or

MG = x · MG/e , or

MG = y · MG−e

Furthermore, we have TG ↔ TG/e t TG−e



TGS - Splitting

Splitting based on the recursive formula for the Tutte polynomial.

T (G ; x , y) =


yT (G − e; x , y) e a loop

xT (G/e; x , y) e a bridge

T (G − e; x , y) + T (G/e; x , y) otherwise

MG =MG/e tMG−e , or

MG = x · MG/e , or

MG = y · MG−e

Furthermore, we have TG ↔ TG/e t TG−e



TGS - Splitting

Splitting based on the recursive formula for the Tutte polynomial.

T (G ; x , y) =


yT (G − e; x , y) e a loop

xT (G/e; x , y) e a bridge

T (G − e; x , y) + T (G/e; x , y) otherwise

MG =MG/e tMG−e , or

MG = x · MG/e , or

MG = y · MG−e

Furthermore, we have TG ↔ TG/e t TG−e



TGS - Splitting

Proposition:

Let τ be the assignments f 7→ Tf and ρ be the assignments f 7→ xαyβ .
These maps are bijective.

PG ,q, TG ,MG

PG/e,q, TG/e ,MG/e PG−e,q, TG−e ,MG−e



TGS - Splitting

Proposition:

Let τ be the assignments f 7→ Tf and ρ be the assignments f 7→ xαyβ .
These maps are bijective.

PG ,q, TG ,MG

PG/e,q, TG/e ,MG/e PG−e,q, TG−e ,MG−e



TGS - Splitting



Compare with Established Algorithms
Dhar’s Burning Algorithm

Start with something simple.

Let OE be a global edge order, D the application of Dhar’s algorithm to
PG ,q, and K the composition of D with the bijection TG →MG arising
from internal and external activities.

Proposition: The diagrams commute.



Compare with Established Algorithms
Dhar’s Burning Algorithm

Start with something simple.

Let OE be a global edge order, D the application of Dhar’s algorithm to
PG ,q, and K the composition of D with the bijection TG →MG arising
from internal and external activities.

Proposition: The diagrams commute.



Compare with Established Algorithms
Family of Chebikin and Pylyavskyy [CP05]

Something more interesting.

Proper set of tree orders: Given an ordering π(T ) on the vertices of
every subtree T rooted at q, the collection
ΠG = {π(T ) | T ⊂ G a rooted tree} is a proper set of tree orders if

• When the overlap of T and T ′ contains a rooted tree, and i , j are
vertices in this overlap, then i <π(T ) j ⇐⇒ i <π(T ′) j

• A directed edge (u, v) ∈ T means v < u in π(T ).



Compare with Established Algorithms
Family of Chebikin and Pylyavskyy [CP05]

Something more interesting.

Proper set of tree orders: Given an ordering π(T ) on the vertices of
every subtree T rooted at q, the collection
ΠG = {π(T ) | T ⊂ G a rooted tree} is a proper set of tree orders if

• When the overlap of T and T ′ contains a rooted tree, and i , j are
vertices in this overlap, then i <π(T ) j ⇐⇒ i <π(T ′) j

• A directed edge (u, v) ∈ T means v < u in π(T ).



Compare with Established Algorithms
Family of Chebikin and Pylyavskyy [CP05]

Something more interesting.

Proper set of tree orders: Given an ordering π(T ) on the vertices of
every subtree T rooted at q, the collection
ΠG = {π(T ) | T ⊂ G a rooted tree} is a proper set of tree orders if

• When the overlap of T and T ′ contains a rooted tree, and i , j are
vertices in this overlap, then i <π(T ) j ⇐⇒ i <π(T ′) j

• A directed edge (u, v) ∈ T means v < u in π(T ).



Compare with Established Algorithms
Family of Chebikin and Pylyavskyy [CP05]

Something more interesting.

Proper set of tree orders: Given an ordering π(T ) on the vertices of
every subtree T rooted at q, the collection
ΠG = {π(T ) | T ⊂ G a rooted tree} is a proper set of tree orders if

• When the overlap of T and T ′ contains a rooted tree, and i , j are
vertices in this overlap, then i <π(T ) j ⇐⇒ i <π(T ′) j

• A directed edge (u, v) ∈ T means v < u in π(T ).



Compare with Established Algorithms
Family of Chebikin and Pylyavskyy [CP05]

Something more interesting.

Proper set of tree orders: Given an ordering π(T ) on the vertices of
every subtree T rooted at q, the collection
ΠG = {π(T ) | T ⊂ G a rooted tree} is a proper set of tree orders if

• When the overlap of T and T ′ contains a rooted tree, and i , j are
vertices in this overlap, then i <π(T ) j ⇐⇒ i <π(T ′) j

• A directed edge (u, v) ∈ T means v < u in π(T ).



Bijection Φ : PG ,q → TG for every ΠG .



Bijection Φ : PG ,q → TG for every ΠG .



Bijection Φ : PG ,q → TG for every ΠG .



Bijection Φ : PG ,q → TG for every ΠG .



Compare with Established Algorithms
Family of Chebikin and Pylyavskyy

Define Ω : {ΠG} → {Σ}.

The TGS Ω(ΠG ) may consider more edges at each step, and may add
edges in a different order; however, the same spanning tree will be
obtained as for Φ.

Proposition:The map Ω is injective and the diagram commutes.



Compare with Established Algorithms
Family of Chebikin and Pylyavskyy

Define Ω : {ΠG} → {Σ}.

The TGS Ω(ΠG ) may consider more edges at each step, and may add
edges in a different order; however, the same spanning tree will be
obtained as for Φ.

Proposition:The map Ω is injective and the diagram commutes.



Related Work by Other Authors

• Yuen

• Backman, Baker, Yuen

• Question posed by Hopkins: Classify tie-breaks for Dhar’s algorithm.



Thank you!
Preprint: arXiv:2005.06456 (updates recently submitted)



References I

Olivier Bernardi, A characterization of the Tutte polynomial via
combinatorial embeddings, Annals of Combinatorics 12 (2008),
no. 2, 139–153, 14 pages.

N.L. Biggs, Chip-firing and the critical group of a graph, Journal of
Algebraic Combinatorics 9 (1999), no. 1, 25–45.

Matthew Baker and Farbod Shokrieh, Chip-firing games, potential
theory on graphs, and spanning trees, Journal of Combinatorial
Theory, Series A 120 (2013), no. 1, 164 – 182.

Robert Cori and Yvan Le Borgne, The sand-pile model and tutte
polynomials, Advances in Applied Mathematics 30 (2003), no. 1, 44
– 52.

Denis Chebikin and Pavlo Pylyavskyy, A family of bijections between
g-parking functions and spanning trees, Journal of Combinatorial
Theory, Series A 110 (2005), no. 1, 31 – 41.



References II

Deepak Dhar, Self-organized critical state of sandpile automaton
models, Phys. Rev. Lett. 64 (1990), 1613–1616.

Dimitrije Kostić and Catherine H. Yan, Multiparking functions,
graph searching, and the tutte polynomial, Advances in Applied
Mathematics 40 (2008), no. 1, 73 – 97.





Tutte for a Zonotopal Tiling

T ∗(Z; x , y) =

{
yT ∗(Z − Bw ; x , y) Z − Bw

∼= Z|Bw

xγT ∗(Z|Bw ; x , y) + T ∗(Z − Bw ; x , y) otherwise

• Visually, γ is the number of zones parallel to Bw ; this is the same as
the number of elements of the associated vector configuration VZ
parallel to w (excluding w).

• Here, ∼= means as tiled zonotopes.



Tutte for a Zonotopal Tiling

T ∗(Z; x , y) =

{
yT ∗(Z − Bw ; x , y) Z − Bw

∼= Z|Bw

xγT ∗(Z|Bw ; x , y) + T ∗(Z − Bw ; x , y) otherwise

• Visually, γ is the number of zones parallel to Bw ; this is the same as
the number of elements of the associated vector configuration VZ
parallel to w (excluding w).

• Here, ∼= means as tiled zonotopes.



Tutte for a Zonotopal Tiling

T ∗(Z; x , y) =

{
yT ∗(Z − Bw ; x , y) Z − Bw

∼= Z|Bw

xγT ∗(Z|Bw ; x , y) + T ∗(Z − Bw ; x , y) otherwise

• Visually, γ is the number of zones parallel to Bw ; this is the same as
the number of elements of the associated vector configuration VZ
parallel to w (excluding w).

• Here, ∼= means as tiled zonotopes.



Zonotope - Cographical Matroid

Given a zonotopal tiling Z, let V∗Z be the matroid with bases subsets of
the configuration which are bases of Rd . Thus, bases correspond to tiles.
If the tiling arises from a graph, it is the cographical matroid.

Theorem: Fix a cubical zonotopal tiling Z of Z with associated vector
configuration VZ . Then T ∗(Z; x , y) is the Tutte polynomial T (V∗Z ; x , y).



Further Questions

Question: Are there choices which are compatible in that they make the
diagram below commute?


