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The Problem



Hyperplane Arrangements

This presentation concerns cones K of arrangements of hyperplanes

A = {H1, . . . ,Hm} in a real vector space V ∼= Rn.

Recall...

• Each arrangement A dissects V into connected components of the

complement V \
⋃m

i=1 Hi called chambers. We denote the set of

chambers of A by C(A).

• The collection L(A) of nonempty intersection subspaces

X = Hi1 ∩ Hi2 ∩ · · · ∩ Hik forms a ranked poset under (reverse)

inclusion. We call this the intersection poset of A.

• Every lower interval

[V ,X ] := {Y ∈ L(A) : V ≤ Y ≤ X}

of L(A) forms a geometric lattice. In particular, each such [V ,X ] is

a ranked poset, with rank function given by the

codim(X ) := n − dim(X ).
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Hyperplane Arrangements

Example

Here is an arrangement A = {H1,H2,H3} ⊆ R2 (left) together

with the Hasse diagram of its intersection poset L(A) (right).

H1

H2

H3

R2

H1 H2H3

H1 ∩ H3 H2 ∩ H3
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Cones in an Arrangement

Definition (Cone)

A cone K of an arrangement A is an intersection of half spaces

defined by some of the hyperplanes of A.

Example

Let’s consider a cone K defined by H4 and H5 in

H4

H1

H2

H3

H5
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Cones in an Arrangement

As with arrangements, a cone K in an arrangement A has chambers and

intersections:

1. The chambers of K are the chambers C(K) ⊆ C(A) strictly

contained in K.

2. The nonempty intersections Lint(K) ⊆ L(A) strictly contained in K
are called interior intersections of K.

Example

H4

H1

H2

H3

H5

0̂

H1 H2 H3

H2 ∩ H3
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Zaslavsky’s Theorem for cones

Theorem (Zaslavsky’s Theorem for Cones)

For a cone K of an arrangement A with intersection poset Lint(K),

we have

#C(K) =
∑

X∈Lint(K)

|µ(V ,X )| =
n∑

k=0

ck(K)

where µ(V ,X ) denotes the Möbius function of Lint(K) and

{ ck(K) } are the Whitney numbers of the cone K.

In other words #C(K) = [Poin(K, t)]t=1 , where Poin(K, t) is the

Poincaré polynomial of K, defined by

Poin(K, t) :=
n∑

k=0

ck(K) tk .

This result is well-known when we take K to be the full arrangement.
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Hyperplane Arrangements
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Hyperplane Arrangements

Example

Here is an arrangement A = {H1,H2,H3} ⊆ R2 (left) together

with the Hasse diagram of its intersection poset L(A) (right).

H1

H2

H3

R2

H1 H2H3

H1 ∩ H3 H2 ∩ H3

+1

−1 −1−1

+1 +1

• The Poincaré polynomial of this arrangement is

Poin(A, t) = t2 + 3t + 2.

• Zaslavsky says: there are 1 + 3 + 2 chambers.
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Zaslavsky’s Theorem for cones

Example

Let’s consider a cone K defined by H4 and H5 in

H4

H1

H2

H3

H5

0̂

H1 H2 H3

H2 ∩ H3

+1

−1 −1 −1

+1

1

3

1

Zaslavsky says: there are 1 + 3 + 1 = 5 chambers in this cone.

Goal: Describe the Poincaré polynomial for cones in Type A.
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Posets



Cones in Type A

• The braid arrangement An−1 = {Hij}1≤i<j≤n is the set of
(
n
2

)
hyperplanes Hij = {(x1, . . . , xn) ∈ V = Rn | xi − xj = 0}.

• There is an (easy) bijection between posets on [n] := {1, 2, . . . , n}
and cones in the braid arrangement An−1, given by sending a poset

P to the cone

KP := {x ∈ V = Rn : xi < xj for i <P j}.

• For any linear order (permutation) on [n], the chamber Kσ lies in

the cone C(KP) if and only σ is a linear extension of P.
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Example

Consider the cone of A4−1 defined by a disjoint union of two chains.

H14

H13

H23

H12

H24

H34

↔ P =
1

2

3

4

The linear extensions of P are:

LinExt(P) = {1234, 1324, 1342, 3124, 3142, 3412}
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Example(A4−1)

We can label the chambers of KP by linear extensions of P.

H14

H13

H23

H12

H24

H34
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Example(A4−1)

We can label the chambers of KP by linear extensions of P.

1234 1324

1342

3124 3142

3412

H14

H13

H23

H12

H24

H34
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Main Problem for Type A

Main Problem

Given a poset P on [n], find a statistic LinExt(P)
stat−→ {0, 1, 2, . . .}

interpreting

#LinExt(P) =
∑
k≥0

ck(P) = [Poin(P, t)]t=1

as follows: ∑
σ∈LinExt(P)

tstat(σ) =
∑
k≥0

ck(P) tk = Poin(P, t).

Let’s motivate this with an example...
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Main Problem for Type A: Motivating Example

Example

Let P be an antichain poset on n elements. This corresponds to

the full arrangement An−1. Then

1 (1 + t)(1 + 2t) · · · (1 + (n − 1)t) =
∑
σ∈Sn

tn−#cycles(σ)

=
∑
k

c(n, k)tn−k = Poin(P, t)

We’ll generalize this example using a notion of P-transverse

permutations.
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P-transverse Permutations

Definition (P-transverse Partition)

Given a poset P on [n], we say that a partition π is P-transverse if

π corresponds to an intersection interior to the cone KP .

Definition (P-transverse Permutation)

Given a poset P on [n], we say that a permutation σ is P-transverse

if the set partition obtained by forgetting the order within the cycles

is P-transverse.
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Main Problem for Type A: Motivating Example

Example

Let P be an antichain poset on n elements. Then all permutations

of [n] are P-transverse.

Example

Let P be the poset on [4] with 1 < 2 and 3 < 4 and no other

relations. Then the P-transverse permutations are

(), (13), (14), (23), (24), (13)(24).
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Main Problem for Type A, rephrased

Main Problem for Type A

Given a poset P on [n], Zaslavsky’s theorem implies that

#LinExt(P) = # (P − transverse permutations) .

Give a combinatorial bijection ψ between these two sets such that∑
σ∈LinExt(P)

tn−cycles(ψ(σ)) =
∑
k≥0

ck(P) tk = Poin(P, t).

We have such a map! Let’s give an example of how it works.
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Example ψ : LinExt(P)→ St(P)

Example

Take σ = 1325476 ∈ LinExt(P) where

P =
1

2

3

4 5

6 7

To compute ψ(σ), we cut σ (greedily) into strings which are an-

tichains of P.
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Example ψ : LinExt(P)→ St(P)

Example

Take σ = 1325476 ∈ LinExt(P) where

P =
1

2

3

4 5

6 7

Level 1

Level 2

Level 3

To compute ψ(σ), we cut σ (greedily) into strings which are an-

tichains of P. Here

σ = 1325476.

Say that x in Level k is essential if it covers an element of Level

k − 1. We denote the essential elements with an overline.
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Example ψ : LinExt(P)→ St(P)

Example

We have σ = 1325476.

Within each level (color block), put a left parenthesis left of each

left-to-right maxmimum among the essential elements:

σ = (1(3(25(4(76

Adding in the right parenthesis: σ = (1)(3)(25)(4)(76) Removing

the decoration gives

ψ(σ) = (1)(3)(25)(4)(76)
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The Theorem

Theorem

Given a poset P on [n], not only does ψ give a bijection, but∑
σ∈LinExt(P)

tn−cycles(ψ(σ)) =
∑
k≥0

ck(P) tk = Poin(P, t).

27



Thanks!
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