Whitney Numbers for Poset Cones

AMS Central in El Paso, Texas (Online)

Galen Dorpalen-Barry*, joint work with Jang Soo Kim \dagger and Vic Reiner* September 13, 2020
*University of Minnesota, \dagger Sungkyunkwan University

Table of contents

1. The Problem
2. Posets
3. Main Problem for Type A

The Problem

Hyperplane Arrangements

This presentation concerns cones \mathcal{K} of arrangements of hyperplanes $\mathcal{A}=\left\{H_{1}, \ldots, H_{m}\right\}$ in a real vector space $V \cong \mathbb{R}^{n}$.

Hyperplane Arrangements

This presentation concerns cones \mathcal{K} of arrangements of hyperplanes $\mathcal{A}=\left\{H_{1}, \ldots, H_{m}\right\}$ in a real vector space $V \cong \mathbb{R}^{n}$.

Recall...

- Each arrangement \mathcal{A} dissects V into connected components of the complement $V \backslash \bigcup_{i=1}^{m} H_{i}$ called chambers. We denote the set of chambers of \mathcal{A} by $\mathcal{C}(\mathcal{A})$.

Hyperplane Arrangements

This presentation concerns cones \mathcal{K} of arrangements of hyperplanes $\mathcal{A}=\left\{H_{1}, \ldots, H_{m}\right\}$ in a real vector space $V \cong \mathbb{R}^{n}$.

Recall...

- Each arrangement \mathcal{A} dissects V into connected components of the complement $V \backslash \bigcup_{i=1}^{m} H_{i}$ called chambers. We denote the set of chambers of \mathcal{A} by $\mathcal{C}(\mathcal{A})$.
- The collection $\mathcal{L}(\mathcal{A})$ of nonempty intersection subspaces $X=H_{i_{1}} \cap H_{i_{2}} \cap \cdots \cap H_{i_{k}}$ forms a ranked poset under (reverse) inclusion. We call this the intersection poset of \mathcal{A}.

Hyperplane Arrangements

This presentation concerns cones \mathcal{K} of arrangements of hyperplanes $\mathcal{A}=\left\{H_{1}, \ldots, H_{m}\right\}$ in a real vector space $V \cong \mathbb{R}^{n}$.

Recall...

- Each arrangement \mathcal{A} dissects V into connected components of the complement $V \backslash \bigcup_{i=1}^{m} H_{i}$ called chambers. We denote the set of chambers of \mathcal{A} by $\mathcal{C}(\mathcal{A})$.
- The collection $\mathcal{L}(\mathcal{A})$ of nonempty intersection subspaces $X=H_{i_{1}} \cap H_{i_{2}} \cap \cdots \cap H_{i_{k}}$ forms a ranked poset under (reverse) inclusion. We call this the intersection poset of \mathcal{A}.
- Every lower interval

$$
[V, X]:=\{Y \in \mathcal{L}(\mathcal{A}): V \leq Y \leq X\}
$$

of $\mathcal{L}(\mathcal{A})$ forms a geometric lattice. In particular, each such $[V, X]$ is
a ranked poset, with rank function given by the $\operatorname{codim}(X):=n-\operatorname{dim}(X)$.

Hyperplane Arrangements

Example

Here is an arrangement $\mathcal{A}=\left\{H_{1}, H_{2}, H_{3}\right\} \subseteq \mathbb{R}^{2}$ (left) together with the Hasse diagram of its intersection poset $\mathcal{L}(\mathcal{A})$ (right).

Cones in an Arrangement

Definition (Cone)

A cone \mathcal{K} of an arrangement \mathcal{A} is an intersection of half spaces defined by some of the hyperplanes of \mathcal{A}.

Cones in an Arrangement

Definition (Cone)

A cone \mathcal{K} of an arrangement \mathcal{A} is an intersection of half spaces defined by some of the hyperplanes of \mathcal{A}.

Example

Let's consider a cone \mathcal{K} defined by H_{4} and H_{5} in

Cones in an Arrangement

Definition (Cone)

A cone \mathcal{K} of an arrangement \mathcal{A} is an intersection of half spaces defined by some of the hyperplanes of \mathcal{A}.

Example

Let's consider a cone \mathcal{K} defined by H_{4} and H_{5} in

Cones in an Arrangement

As with arrangements, a cone \mathcal{K} in an arrangement \mathcal{A} has chambers and intersections:

Cones in an Arrangement

As with arrangements, a cone \mathcal{K} in an arrangement \mathcal{A} has chambers and intersections:

1. The chambers of \mathcal{K} are the chambers $\mathcal{C}(\mathcal{K}) \subseteq \mathcal{C}(\mathcal{A})$ strictly contained in \mathcal{K}.

Cones in an Arrangement

As with arrangements, a cone \mathcal{K} in an arrangement \mathcal{A} has chambers and intersections:

1. The chambers of \mathcal{K} are the chambers $\mathcal{C}(\mathcal{K}) \subseteq \mathcal{C}(\mathcal{A})$ strictly contained in \mathcal{K}.
2. The nonempty intersections $\mathcal{L}^{\text {int }}(\mathcal{K}) \subseteq \mathcal{L}(\mathcal{A})$ strictly contained in \mathcal{K} are called interior intersections of \mathcal{K}.

Cones in an Arrangement

As with arrangements, a cone \mathcal{K} in an arrangement \mathcal{A} has chambers and intersections:

1. The chambers of \mathcal{K} are the chambers $\mathcal{C}(\mathcal{K}) \subseteq \mathcal{C}(\mathcal{A})$ strictly contained in \mathcal{K}.
2. The nonempty intersections $\mathcal{L}^{\text {int }}(\mathcal{K}) \subseteq \mathcal{L}(\mathcal{A})$ strictly contained in \mathcal{K} are called interior intersections of \mathcal{K}.

Cones in an Arrangement

As with arrangements, a cone \mathcal{K} in an arrangement \mathcal{A} has chambers and intersections:

1. The chambers of \mathcal{K} are the chambers $\mathcal{C}(\mathcal{K}) \subseteq \mathcal{C}(\mathcal{A})$ strictly contained in \mathcal{K}.
2. The nonempty intersections $\mathcal{L}^{\text {int }}(\mathcal{K}) \subseteq \mathcal{L}(\mathcal{A})$ strictly contained in \mathcal{K} are called interior intersections of \mathcal{K}.

Example

Zaslavsky's Theorem for cones

Theorem (Zaslavsky's Theorem for Cones)

For a cone \mathcal{K} of an arrangement \mathcal{A} with intersection poset $\mathcal{L}^{\text {int }}(\mathcal{K})$, we have

$$
\# \mathcal{C}(\mathcal{K})=\sum_{X \in \mathcal{L}^{\text {int }}(\mathcal{K})}|\mu(V, X)|=\sum_{k=0}^{n} c_{k}(\mathcal{K})
$$

where $\mu(V, X)$ denotes the Möbius function of $\mathcal{L}^{\text {int }}(\mathcal{K})$ and $\left\{c_{k}(\mathcal{K})\right\}$ are the Whitney numbers of the cone \mathcal{K}.

In other words $\# \mathcal{C}(\mathcal{K})=[\operatorname{Poin}(\mathcal{K}, t)]_{t=1}$, where $\operatorname{Poin}(\mathcal{K}, t)$ is the Poincaré polynomial of \mathcal{K}, defined by

$$
\operatorname{Poin}(\mathcal{K}, t):=\sum_{k=0}^{n} c_{k}(\mathcal{K}) t^{k}
$$

Zaslavsky's Theorem for cones

Theorem (Zaslavsky's Theorem for Cones)

For a cone \mathcal{K} of an arrangement \mathcal{A} with intersection poset $\mathcal{L}^{\text {int }}(\mathcal{K})$, we have

$$
\# \mathcal{C}(\mathcal{K})=\sum_{X \in \mathcal{L}^{\text {int }}(\mathcal{K})}|\mu(V, X)|=\sum_{k=0}^{n} c_{k}(\mathcal{K})
$$

where $\mu(V, X)$ denotes the Möbius function of $\mathcal{L}^{\text {int }}(\mathcal{K})$ and $\left\{c_{k}(\mathcal{K})\right\}$ are the Whitney numbers of the cone \mathcal{K}.

In other words $\# \mathcal{C}(\mathcal{K})=[\operatorname{Poin}(\mathcal{K}, t)]_{t=1}$, where $\operatorname{Poin}(\mathcal{K}, t)$ is the Poincaré polynomial of \mathcal{K}, defined by

$$
\operatorname{Poin}(\mathcal{K}, t):=\sum_{k=0}^{n} c_{k}(\mathcal{K}) t^{k}
$$

This result is well-known when we take \mathcal{K} to be the full arrangement.

Hyperplane Arrangements

Example

Here is an arrangement $\mathcal{A}=\left\{H_{1}, H_{2}, H_{3}\right\} \subseteq \mathbb{R}^{2}$ (left) together with the Hasse diagram of its intersection poset $\mathcal{L}(\mathcal{A})$ (right).

Hyperplane Arrangements

Example

Here is an arrangement $\mathcal{A}=\left\{H_{1}, H_{2}, H_{3}\right\} \subseteq \mathbb{R}^{2}$ (left) together with the Hasse diagram of its intersection poset $\mathcal{L}(\mathcal{A})$ (right).

- The Poincaré polynomial of this arrangement is $\operatorname{Poin}(\mathcal{A}, t)=t^{2}+3 t+2$.

Hyperplane Arrangements

Example

Here is an arrangement $\mathcal{A}=\left\{H_{1}, H_{2}, H_{3}\right\} \subseteq \mathbb{R}^{2}$ (left) together with the Hasse diagram of its intersection poset $\mathcal{L}(\mathcal{A})$ (right).

- The Poincaré polynomial of this arrangement is $\operatorname{Poin}(\mathcal{A}, t)=t^{2}+3 t+2$.
- Zaslavsky says: there are $1+3+2$ chambers.

Zaslavsky's Theorem for cones

Example

Let's consider a cone \mathcal{K} defined by H_{4} and H_{5} in

Zaslavsky's Theorem for cones

Example

Let's consider a cone \mathcal{K} defined by H_{4} and H_{5} in

Zaslavsky's Theorem for cones

Example

Let's consider a cone \mathcal{K} defined by H_{4} and H_{5} in

Zaslavsky's Theorem for cones

Example

Let's consider a cone \mathcal{K} defined by H_{4} and H_{5} in

Zaslavsky says: there are $1+3+1=5$ chambers in this cone.

Zaslavsky's Theorem for cones

Example

Let's consider a cone \mathcal{K} defined by H_{4} and H_{5} in

Zaslavsky says: there are $1+3+1=5$ chambers in this cone.

Goal: Describe the Poincaré polynomial for cones in Type A.

Posets

Cones in Type A

- The braid arrangement $A_{n-1}=\left\{H_{i j}\right\}_{1 \leq i<j \leq n}$ is the set of $\binom{n}{2}$ hyperplanes $H_{i j}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in V=\mathbb{R}^{n} \mid x_{i}-x_{j}=0\right\}$.

Cones in Type A

- The braid arrangement $A_{n-1}=\left\{H_{i j}\right\}_{1 \leq i<j \leq n}$ is the set of $\binom{n}{2}$ hyperplanes $H_{i j}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in V=\mathbb{R}^{n} \mid x_{i}-x_{j}=0\right\}$.
- There is an (easy) bijection between posets on $[n]:=\{1,2, \ldots, n\}$ and cones in the braid arrangement A_{n-1}, given by sending a poset P to the cone

$$
\mathcal{K}_{P}:=\left\{x \in V=\mathbb{R}^{n}: x_{i}<x_{j} \text { for } i<p j\right\} .
$$

Cones in Type A

- The braid arrangement $A_{n-1}=\left\{H_{i j}\right\}_{1 \leq i<j \leq n}$ is the set of $\binom{n}{2}$ hyperplanes $H_{i j}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in V=\mathbb{R}^{n} \mid x_{i}-x_{j}=0\right\}$.
- There is an (easy) bijection between posets on $[n]:=\{1,2, \ldots, n\}$ and cones in the braid arrangement A_{n-1}, given by sending a poset P to the cone

$$
\mathcal{K}_{P}:=\left\{x \in V=\mathbb{R}^{n}: x_{i}<x_{j} \text { for } i<_{p} j\right\} .
$$

- For any linear order (permutation) on [n], the chamber \mathcal{K}_{σ} lies in the cone $\mathcal{C}\left(\mathcal{K}_{P}\right)$ if and only σ is a linear extension of P.

Example

Consider the cone of A_{4-1} defined by a disjoint union of two chains.

The linear extensions of P are:
$\operatorname{LinExt}(P)=\left\{\begin{array}{llllll}1234, & 1324, & 1342, & 3124, & 3142, & 3412\end{array}\right\}$

Example $\left(A_{4-1}\right)$

We can label the chambers of \mathcal{K}_{P} by linear extensions of P.

Example $\left(A_{4-1}\right)$

We can label the chambers of \mathcal{K}_{P} by linear extensions of P.

Main Problem for Type A

Main Problem for Type A

Main Problem

Given a poset P on $[n]$, find a statistic $\operatorname{LinExt}(P) \xrightarrow{\text { stat }}\{0,1,2, \ldots\}$ interpreting

$$
\# \operatorname{LinExt}(P)=\sum_{k \geq 0} c_{k}(P)=[\operatorname{Poin}(P, t)]_{t=1}
$$

as follows:

$$
\sum_{\sigma \in \operatorname{LinExt}(P)} t^{\operatorname{stat}(\sigma)}=\sum_{k \geq 0} c_{k}(P) t^{k}=\operatorname{Poin}(P, t)
$$

Main Problem for Type A

Main Problem

Given a poset P on $[n]$, find a statistic $\operatorname{LinExt}(P) \xrightarrow{\text { stat }}\{0,1,2, \ldots\}$ interpreting

$$
\# \operatorname{LinExt}(P)=\sum_{k \geq 0} c_{k}(P)=[\operatorname{Poin}(P, t)]_{t=1}
$$

as follows:

$$
\sum_{\sigma \in \operatorname{LinExt}(P)} t^{\operatorname{stat}(\sigma)}=\sum_{k \geq 0} c_{k}(P) t^{k}=\operatorname{Poin}(P, t)
$$

Let's motivate this with an example...

Main Problem for Type A: Motivating Example

Example

Let P be an antichain poset on n elements. This corresponds to the full arrangement A_{n-1}. Then

$$
\begin{gathered}
1(1+t)(1+2 t) \cdots(1+(n-1) t)=\sum_{\sigma \in \mathfrak{G}_{n}} t^{n-\# \operatorname{cycles}(\sigma)} \\
=\sum_{k} c(n, k) t^{n-k}=\operatorname{Poin}(P, t)
\end{gathered}
$$

Main Problem for Type A: Motivating Example

Example

Let P be an antichain poset on n elements. This corresponds to the full arrangement A_{n-1}. Then

$$
\begin{gathered}
1(1+t)(1+2 t) \cdots(1+(n-1) t)=\sum_{\sigma \in \mathfrak{G}_{n}} t^{n-\# \operatorname{cycles}(\sigma)} \\
=\sum_{k} c(n, k) t^{n-k}=\operatorname{Poin}(P, t)
\end{gathered}
$$

We'll generalize this example using a notion of P-transverse permutations.

Definition (P-transverse Partition)

Given a poset P on $[n]$, we say that a partition π is P-transverse if π corresponds to an intersection interior to the cone \mathcal{K}_{p}.

P-transverse Permutations

Definition (P-transverse Partition)

Given a poset P on [n], we say that a partition π is P-transverse if π corresponds to an intersection interior to the cone \mathcal{K}_{p}.

Definition (P-transverse Permutation)

Given a poset P on $[n]$, we say that a permutation σ is P-transverse if the set partition obtained by forgetting the order within the cycles is P-transverse.

Main Problem for Type A: Motivating Example

Example

Let P be an antichain poset on n elements. Then all permutations of [n] are P-transverse.

Main Problem for Type A: Motivating Example

Example

Let P be an antichain poset on n elements. Then all permutations of [n] are P-transverse.

Example

Let P be the poset on [4] with $1<2$ and $3<4$ and no other relations. Then the P-transverse permutations are

$$
(),(13),(14),(23),(24),(13)(24) .
$$

Main Problem for Type A, rephrased

Main Problem for Type A

Given a poset P on $[n]$, Zaslavsky's theorem implies that

$$
\# \operatorname{LinExt}(P)=\#(P-\text { transverse permutations }) .
$$

Give a combinatorial bijection ψ between these two sets such that

$$
\sum_{\sigma \in \operatorname{LinExt}(P)} t^{n-\operatorname{cycles}(\psi(\sigma))}=\sum_{k \geq 0} c_{k}(P) t^{k}=\operatorname{Poin}(P, t)
$$

Main Problem for Type A, rephrased

Main Problem for Type A

Given a poset P on $[n]$, Zaslavsky's theorem implies that

$$
\# \operatorname{LinExt}(P)=\#(P-\text { transverse permutations }) .
$$

Give a combinatorial bijection ψ between these two sets such that

$$
\sum_{\sigma \in \operatorname{LinExt}(P)} t^{n-\operatorname{cycles}(\psi(\sigma))}=\sum_{k \geq 0} c_{k}(P) t^{k}=\operatorname{Poin}(P, t)
$$

We have such a map! Let's give an example of how it works.

Example $\psi: \operatorname{LinExt}(P) \rightarrow \mathfrak{S}^{\dagger}(P)$

Example

Take $\sigma=1325476 \in \operatorname{LinExt}(P)$ where

Example $\psi: \operatorname{LinExt}(P) \rightarrow \mathfrak{S}^{\dagger}(P)$

Example

Take $\sigma=1325476 \in \operatorname{LinExt}(P)$ where

To compute $\psi(\sigma)$, we cut σ (greedily) into strings which are antichains of P.

Example $\psi: \operatorname{LinExt}(P) \rightarrow \mathfrak{S}^{\dagger}(P)$

Example

Take $\sigma=1325476 \in \operatorname{LinExt}(P)$ where

To compute $\psi(\sigma)$, we cut σ (greedily) into strings which are antichains of P. Here

$$
\sigma=1325476 .
$$

Example $\psi: \operatorname{LinExt}(P) \rightarrow \mathfrak{S}^{\dagger}(P)$

Example

Take $\sigma=1325476 \in \operatorname{LinExt}(P)$ where

To compute $\psi(\sigma)$, we cut σ (greedily) into strings which are antichains of P. Here

$$
\sigma=1325476 .
$$

Say that x in Level k is essential if it covers an element of Level $k-1$. We denote the essential elements with an overline.

Example $\psi: \operatorname{LinExt}(P) \rightarrow \mathfrak{S}^{\dagger}(P)$

Example

Take $\sigma=1325476 \in \operatorname{LinExt}(P)$ where

To compute $\psi(\sigma)$, we cut σ (greedily) into strings which are antichains of P. Here

$$
\sigma=\overline{1325476}
$$

Say that x in Level k is essential if it covers an element of Level $k-1$. We denote the essential elements with an overline.

Example $\psi: \operatorname{LinExt}(P) \rightarrow \mathfrak{S}^{\dagger}(P)$

Example

We have $\sigma=\overline{1325476}$.
Within each level (color block), put a left parenthesis left of each left-to-right maxmimum among the essential elements:

$$
\sigma=(\overline{1}(\overline{3}) \overline{2} 5(\overline{4}(\overline{76}
$$

Example $\psi: \operatorname{LinExt}(P) \rightarrow \mathfrak{S}^{\pitchfork}(P)$

Example

We have $\sigma=\overline{1325476}$.
Within each level (color block), put a left parenthesis left of each left-to-right maxmimum among the essential elements:

$$
\sigma=(\overline{1}(\overline{3}) \overline{2} 5(\overline{4}(\overline{76}
$$

Adding in the right parenthesis: $\sigma=(\overline{1})(\overline{3})(\overline{2})(\overline{4})(\overline{76})$

Example $\psi: \operatorname{LinExt}(P) \rightarrow \mathfrak{S}^{\pitchfork}(P)$

Example

We have $\sigma=\overline{1325476}$.
Within each level (color block), put a left parenthesis left of each left-to-right maxmimum among the essential elements:

$$
\sigma=(\overline{1}(\overline{3}) \overline{2} 5(\overline{4}(\overline{76}
$$

Adding in the right parenthesis: $\sigma=(\overline{1})(\overline{3})(\overline{25})(\overline{4})(\overline{76})$ Removing the decoration gives

$$
\psi(\sigma)=(1)(3)(25)(4)(76)
$$

The Theorem

Theorem

Given a poset P on [n], not only does ψ give a bijection, but

$$
\sum_{\sigma \in \operatorname{LinExt}(P)} t^{n-\operatorname{cycles}(\psi(\sigma))}=\sum_{k \geq 0} c_{k}(P) t^{k}=\operatorname{Poin}(P, t)
$$

Thanks!

References

[1] Richard Stanley. An Introduction to Hyperplane Arrangements. Geometric Combinatorics IAS/Park City Mathematics Series, pages 389-496, 2007.
[2] Thomas Zaslavsky. A Combinatorial Analysis of Topological Dissections. Advances in Mathematics, 25(3):267-285, 1977.

