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Hyperplane Arrangements

This presentation concerns cones K of arrangements of hyperplanes
A={Hi,...,Hpn} in a real vector space V = R".

Recall...

e Each arrangement A dissects V into connected components of the
complement V\ |J; H; called chambers. We denote the set of
chambers of A by C(A).

e The collection £(.A) of nonempty intersection subspaces
X =H;, NH,N---NH, forms a ranked poset under (reverse)
inclusion. We call this the intersection poset of A.

e Every lower interval
[V.X]:={Y €L(A):V<Y<X]}
of L(A) forms a geometric lattice. In particular, each such [V, X] is

a ranked poset, with rank function given by the
codim(X) := n —dim(X).



Hyperplane Arrangements

Here is an arrangement A = {H;, Hy, H3} C R? (left) together
with the Hasse diagram of its intersection poset £(.A) (right).
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Cones in an Arrangement

As with arrangements, a cone K in an arrangement 4 has chambers and
intersections:

1. The chambers of K are the chambers C(K) C C(A) strictly
contained in K.

2. The nonempty intersections L (K) C £(.A) strictly contained in K
are called interior intersections of K.

Hi Hs
e Hy N Hs
el ) HQ/ \H3
H> 0



Zaslavsky’'s Theorem for cones

Theorem (Zaslavsky's Theorem for Cones)

For a cone K of an arrangement A with intersection poset £"(K),

we have

#C(K)= Y [V, X) = alk)
XeLm(K) k=0
where 1(V,X) denotes the Mabius function of £"(K) and
{ck(K) } are the Whitney numbers of the cone K.
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In other words #C(K) = [Poin(KC, t)],_; , where Poin(/C, t) is the
Poincaré polynomial of K, defined by
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For a cone K of an arrangement A with intersection poset £"(K),

we have

#C(K)= Y [V, X) = alk)
XeLm(K) k=0
where 1(V,X) denotes the Mabius function of £"(K) and
{ck(K) } are the Whitney numbers of the cone K.
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In other words #C(K) = [Poin(KC, t)],_; , where Poin(/C, t) is the
Poincaré polynomial of K, defined by
Poin(KC, t) := Z e (K) i
k=0
This result is well-known when we take /C to be the full arrangement.
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Here is an arrangement A = {Hi, Hy, H3} C R? (left) together
with the Hasse diagram of its intersection poset £(.A) (right).
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Hyperplane Arrangements

Here is an arrangement A = {Hi, Hy, H3} C R? (left) together
with the Hasse diagram of its intersection poset £(.A) (right).

+1 HinH;  HonHs (o1

e The Poincaré polynomial of this arrangement is
Poin(A, t) = t? + 3t + 2.
e Zaslavsky says: there are 1 4 3 4+ 2 chambers.




Zaslavsky’'s Theorem for cones

Let's consider a cone KC defined by Hs and Hs in
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H4\ ) Hy N Hs
W y Hz/ \H3
H> 0

10



Zaslavsky’'s Theorem for cones

Let's consider a cone KC defined by Hs and Hs in

o Hs
H4\ ?ﬁf
H5/><\ L Hy Ho> Hs
: 0

11



Zaslavsky’'s Theorem for cones

Let's consider a cone KC defined by Hs and Hs in

o Hs
H4\ H> N H3 1
WY N HZ/ \H3 3
H 0 1



Zaslavsky’'s Theorem for cones

Let's consider a cone KC defined by Hs and Hs in

o Hs
Ha. ?mﬁ 1
H5/x\ S Hy H> Hs 3
H 0 1

Zaslavsky says:
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Zaslavsky’'s Theorem for cones

Let's consider a cone K defined by H, and Hs in

Hi Hs
He Ha N Hs 1
el N Hz/ \H3 3
H 0 1

Zaslavsky says:

Goal: Describe the Poincaré polynomial for cones in Type A.
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Cones in Type A

e The braid arrangement A,_; = {Hjj}1<i<j<n is the set of (7)
hyperplanes Hjj = {(x1,.. ., xp) € V=R"| x; — x; = 0}.
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Cones in Type A
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Cones in Type A

e The braid arrangement A,_1 = {Hj}1<i<j<n is the set of (3)
hyperplanes Hjj = {(x1,...,x,) € V=R" | x; — x; = 0}.

e There is an (easy) bijection between posets on [n] := {1,2,..., n}
and cones in the braid arrangement A,_1, given by sending a poset
P to the cone

]CP;:{XE\/:RHZX;<)<ijFi<Pj}.

e For any linear order (permutation) on [n], the chamber /C, lies in

the cone C(Kp) if and only o is a linear extension of P.
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Consider the cone of A;_; defined by a disjoint union of two chains.

@
©)

The linear extensions of P are:

LinExt(P) = {1234, 1324, 1342, 3124, 3142, 3412}
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Example(A;_1)

We can label the chambers of Kp by linear extensions of P.
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Main Problem for Type A: Motivating Example

Let P be an antichain poset on n elements. This corresponds to
the full arrangement A,_1. Then

1(1+t)(1—|—2t) (1+(n_ l)t Z gn—#cycles(o
oEG,

— Z c(n, k)t"~k = Poin(P, t)
k
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Main Problem for Type A: Motivating Example

Let P be an antichain poset on n elements. This corresponds to
the full arrangement A,_1. Then

1 (1 + t)(l + 2t) . (]_ 4 (n _ l)t) — Z ¢n—#cycles(o)
ceES,

— Z c(n, k)t"~k = Poin(P, t)
k

\. J

We'll generalize this example using a notion of P-transverse
permutations.
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P-transverse Permutations

Definition (P-transverse Partition)

Given a poset P on [n], we say that a partition 7 is P-transverse if
7 corresponds to an intersection interior to the cone Kp.

20



P-transverse Permutations

Definition (P-transverse Partition)

Given a poset P on [n], we say that a partition 7 is P-transverse if
7 corresponds to an intersection interior to the cone Kp.

Definition (P-transverse Permutation)

Given a poset P on [n], we say that a permutation o is P-transverse
if the set partition obtained by forgetting the order within the cycles
is P-transverse.




Main Problem for Type A: Motivating Example

Let P be an antichain poset on n elements. Then all permutations
of [n] are P-transverse.
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Main Problem for Type A: Motivating Example

Let P be an antichain poset on n elements. Then all permutations

of [n] are P-transverse.

Let P be the poset on [4] with 1 < 2 and 3 < 4 and no other
relations. Then the P-transverse permutations are

(), (13), (14), (23), (24), (13)(24).
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Main Problem for Type A

Given a poset P on [n], Zaslavsky's theorem implies that

#LinExt(P) = # (P — transverse permutations) .

Give a combinatorial bijection 1) between these two sets such that

We have such a map! Let’s give an example of how it works.
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Example 1 : LinExt(P) — &"(P)

Take o = 1325476 € LinExt(P) where

tichains of P.

® (D

Q @ ®
P=

O ®

To compute 1(c), we cut o (greedily) into strings which are an-
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Example 1 : LinExt(P) — &"(P)

We have o = 1325476.
Within each level (color block), put a left parenthesis left of each

left-to-right maxmimum among the essential elements:

o = (1(3(25(4(76

Adding in the right parenthesis: o = (1)(3)(25)(4)(76) Removing
the decoration gives

P(o) = (1)(3)(25)(4)(76)
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The Theorem

Given a poset P on [n], not only does 1) give a bijection, but

S enoesv) = 37 ¢ (P) t* = Poin(P, t).

o €LinExt(P) k>0
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Thanks!
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