

Whitney Numbers for Poset Cones

AMS Central in El Paso, Texas (Online)

Galen Dorpalen-Barry*, joint work with Jang Soo Kim† and Vic Reiner* September 13, 2020

*University of Minnesota, † Sungkyunkwan University

- 1. The Problem
- 2. Posets
- 3. Main Problem for Type A

The Problem

This presentation concerns *cones* \mathcal{K} of arrangements of hyperplanes $\mathcal{A} = \{H_1, \dots, H_m\}$ in a real vector space $V \cong \mathbb{R}^n$.

This presentation concerns *cones* \mathcal{K} of arrangements of hyperplanes $\mathcal{A} = \{H_1, \dots, H_m\}$ in a real vector space $V \cong \mathbb{R}^n$. Recall...

Each arrangement A dissects V into connected components of the complement V \ ∪_{i=1}^m H_i called *chambers*. We denote the set of chambers of A by C(A).

This presentation concerns *cones* \mathcal{K} of arrangements of hyperplanes $\mathcal{A} = \{H_1, \dots, H_m\}$ in a real vector space $V \cong \mathbb{R}^n$. Recall...

- Each arrangement A dissects V into connected components of the complement V \ ∪_{i=1}^m H_i called *chambers*. We denote the set of chambers of A by C(A).
- The collection L(A) of nonempty intersection subspaces
 X = H_{i1} ∩ H_{i2} ∩ ··· ∩ H_{ik} forms a ranked poset under (reverse) inclusion. We call this the *intersection poset* of A.

This presentation concerns *cones* \mathcal{K} of arrangements of hyperplanes $\mathcal{A} = \{H_1, \dots, H_m\}$ in a real vector space $V \cong \mathbb{R}^n$. Recall...

- Each arrangement A dissects V into connected components of the complement V \ ∪_{i=1}^m H_i called *chambers*. We denote the set of chambers of A by C(A).
- The collection L(A) of nonempty intersection subspaces
 X = H_{i1} ∩ H_{i2} ∩ · · · ∩ H_{ik} forms a ranked poset under (reverse) inclusion. We call this the *intersection poset* of A.
- Every lower interval

$$[V,X] := \{Y \in \mathcal{L}(\mathcal{A}) : V \le Y \le X\}$$

of $\mathcal{L}(\mathcal{A})$ forms a *geometric lattice*. In particular, each such [V, X] is a *ranked* poset, with rank function given by the $\operatorname{codim}(X) := n - \dim(X)$.

Here is an arrangement $\mathcal{A} = \{H_1, H_2, H_3\} \subseteq \mathbb{R}^2$ (left) together with the Hasse diagram of its intersection poset $\mathcal{L}(\mathcal{A})$ (right).

Definition (Cone)

A cone \mathcal{K} of an arrangement \mathcal{A} is an intersection of half spaces defined by some of the hyperplanes of \mathcal{A} .

Definition (Cone)

A cone \mathcal{K} of an arrangement \mathcal{A} is an intersection of half spaces defined by some of the hyperplanes of \mathcal{A} .

Example

Let's consider a cone ${\cal K}$ defined by ${\it H}_4$ and ${\it H}_5$ in

Definition (Cone)

A cone \mathcal{K} of an arrangement \mathcal{A} is an intersection of half spaces defined by some of the hyperplanes of \mathcal{A} .

Example

Let's consider a cone \mathcal{K} defined by H_4 and H_5 in

As with arrangements, a cone ${\cal K}$ in an arrangement ${\cal A}$ has chambers and intersections:

1. The chambers of \mathcal{K} are the chambers $\mathcal{C}(\mathcal{K}) \subseteq \mathcal{C}(\mathcal{A})$ strictly contained in \mathcal{K} .

- 1. The chambers of \mathcal{K} are the chambers $\mathcal{C}(\mathcal{K}) \subseteq \mathcal{C}(\mathcal{A})$ strictly contained in \mathcal{K} .
- The nonempty intersections L^{int}(K) ⊆ L(A) strictly contained in K are called *interior intersections* of K.

- 1. The chambers of \mathcal{K} are the chambers $\mathcal{C}(\mathcal{K}) \subseteq \mathcal{C}(\mathcal{A})$ strictly contained in \mathcal{K} .
- The nonempty intersections L^{int}(K) ⊆ L(A) strictly contained in K are called *interior intersections* of K.

- 1. The chambers of \mathcal{K} are the chambers $\mathcal{C}(\mathcal{K}) \subseteq \mathcal{C}(\mathcal{A})$ strictly contained in \mathcal{K} .
- The nonempty intersections L^{int}(K) ⊆ L(A) strictly contained in K are called *interior intersections* of K.

Theorem (Zaslavsky's Theorem for Cones)

For a cone \mathcal{K} of an arrangement \mathcal{A} with intersection poset $\mathcal{L}^{int}(\mathcal{K})$, we have

$$\#\mathcal{C}(\mathcal{K}) = \sum_{X \in \mathcal{L}^{ ext{int}}(\mathcal{K})} |\mu(V, X)| = \sum_{k=0}^{n} c_k(\mathcal{K})$$

where $\mu(V, X)$ denotes the Möbius function of $\mathcal{L}^{int}(\mathcal{K})$ and $\{c_k(\mathcal{K})\}$ are the Whitney numbers of the cone \mathcal{K} .

In other words $\#C(\mathcal{K}) = [Poin(\mathcal{K}, t)]_{t=1}$, where $Poin(\mathcal{K}, t)$ is the Poincaré polynomial of \mathcal{K} , defined by

$$\mathsf{Poin}(\mathcal{K},t) := \sum_{k=0}^{n} c_k(\mathcal{K}) t^k.$$

Theorem (Zaslavsky's Theorem for Cones)

For a cone \mathcal{K} of an arrangement \mathcal{A} with intersection poset $\mathcal{L}^{int}(\mathcal{K})$, we have

$$\#\mathcal{C}(\mathcal{K}) = \sum_{X \in \mathcal{L}^{ ext{int}}(\mathcal{K})} |\mu(V, X)| = \sum_{k=0}^{n} c_k(\mathcal{K})$$

where $\mu(V, X)$ denotes the Möbius function of $\mathcal{L}^{int}(\mathcal{K})$ and $\{c_k(\mathcal{K})\}$ are the Whitney numbers of the cone \mathcal{K} .

In other words $\#C(\mathcal{K}) = [Poin(\mathcal{K}, t)]_{t=1}$, where $Poin(\mathcal{K}, t)$ is the Poincaré polynomial of \mathcal{K} , defined by

$$\mathsf{Poin}(\mathcal{K},t) := \sum_{k=0}^{n} c_k(\mathcal{K}) t^k.$$

This result is well-known when we take \mathcal{K} to be the full arrangement.

Example

Here is an arrangement $\mathcal{A} = \{H_1, H_2, H_3\} \subseteq \mathbb{R}^2$ (left) together with the Hasse diagram of its intersection poset $\mathcal{L}(\mathcal{A})$ (right).

Example

Here is an arrangement $\mathcal{A} = \{H_1, H_2, H_3\} \subseteq \mathbb{R}^2$ (left) together with the Hasse diagram of its intersection poset $\mathcal{L}(\mathcal{A})$ (right).

 The Poincaré polynomial of this arrangement is Poin(A, t) = t² + 3t + 2.

Example

Here is an arrangement $\mathcal{A} = \{H_1, H_2, H_3\} \subseteq \mathbb{R}^2$ (left) together with the Hasse diagram of its intersection poset $\mathcal{L}(\mathcal{A})$ (right).

- The Poincaré polynomial of this arrangement is Poin(A, t) = t² + 3t + 2.
- Zaslavsky says: there are 1 + 3 + 2 chambers.

Goal: Describe the Poincaré polynomial for cones in Type A.

Posets

• The braid arrangement $A_{n-1} = \{H_{ij}\}_{1 \le i < j \le n}$ is the set of $\binom{n}{2}$ hyperplanes $H_{ij} = \{(x_1, \ldots, x_n) \in V = \mathbb{R}^n \mid x_i - x_j = 0\}.$

- The braid arrangement $A_{n-1} = \{H_{ij}\}_{1 \le i < j \le n}$ is the set of $\binom{n}{2}$ hyperplanes $H_{ij} = \{(x_1, \ldots, x_n) \in V = \mathbb{R}^n \mid x_i x_j = 0\}.$
- There is an (easy) bijection between posets on [n] := {1, 2, ..., n} and cones in the braid arrangement A_{n-1}, given by sending a poset P to the cone

$$\mathcal{K}_P := \{ x \in V = \mathbb{R}^n : x_i < x_j \text{ for } i <_P j \}.$$

- The braid arrangement $A_{n-1} = \{H_{ij}\}_{1 \le i < j \le n}$ is the set of $\binom{n}{2}$ hyperplanes $H_{ij} = \{(x_1, \ldots, x_n) \in V = \mathbb{R}^n \mid x_i x_j = 0\}.$
- There is an (easy) bijection between posets on [n] := {1, 2, ..., n} and cones in the braid arrangement A_{n-1}, given by sending a poset P to the cone

$$\mathcal{K}_P := \{ x \in V = \mathbb{R}^n : x_i < x_j \text{ for } i <_P j \}.$$

 For any linear order (permutation) on [n], the chamber K_σ lies in the cone C(K_P) if and only σ is a linear extension of P.

Consider the cone of A_{4-1} defined by a disjoint union of two chains.

Example(A_{4-1})

We can label the chambers of \mathcal{K}_P by linear extensions of P.

Example (A_{4-1})

We can label the chambers of \mathcal{K}_P by linear extensions of P.

Main Problem

Given a poset *P* on [*n*], find a statistic LinExt(*P*) $\xrightarrow{\text{stat}} \{0, 1, 2, \ldots\}$ interpreting

$$\#\mathsf{LinExt}(P) = \sum_{k \ge 0} c_k(P) = [\mathsf{Poin}(P, t)]_{t=1}$$

as follows:

$$\sum_{\sigma \in \text{LinExt}(P)} t^{\text{stat}(\sigma)} = \sum_{k \ge 0} c_k(P) t^k = \text{Poin}(P, t).$$

Main Problem

Given a poset P on [n], find a statistic LinExt $(P) \xrightarrow{\text{stat}} \{0, 1, 2, \ldots\}$ interpreting

$$\#\mathsf{LinExt}(P) = \sum_{k \ge 0} c_k(P) = [\mathsf{Poin}(P, t)]_{t=1}$$

as follows:

$$\sum_{\in \mathsf{LinExt}(P)} t^{\mathsf{stat}(\sigma)} = \sum_{k \ge 0} c_k(P) t^k = \mathsf{Poin}(P, t).$$

Let's motivate this with an example...

Let *P* be an antichain poset on *n* elements. This corresponds to the full arrangement A_{n-1} . Then

$$1(1+t)(1+2t)\cdots(1+(n-1)t) = \sum_{\sigma\in\mathfrak{S}_n} t^{n-\#\mathsf{cycles}(\sigma)}$$
$$= \sum_k c(n,k)t^{n-k} = \mathsf{Poin}(P,t)$$

Let *P* be an antichain poset on *n* elements. This corresponds to the full arrangement A_{n-1} . Then

$$1(1+t)(1+2t)\cdots(1+(n-1)t) = \sum_{\sigma\in\mathfrak{S}_n} t^{n-\#\mathsf{cycles}(\sigma)}$$
$$= \sum_k c(n,k)t^{n-k} = \mathsf{Poin}(P,t)$$

We'll generalize this example using a notion of *P*-transverse permutations.

Definition (*P*-transverse Partition)

Given a poset *P* on [*n*], we say that a partition π is *P*-transverse if π corresponds to an intersection interior to the cone \mathcal{K}_{P} .

Definition (*P*-transverse Partition)

Given a poset *P* on [*n*], we say that a partition π is *P*-transverse if π corresponds to an intersection interior to the cone \mathcal{K}_{P} .

Definition (*P*-transverse Permutation)

Given a poset P on [n], we say that a permutation σ is P-transverse if the set partition obtained by forgetting the order within the cycles is P-transverse.

Let P be an antichain poset on n elements. Then all permutations of [n] are P-transverse.

Let P be an antichain poset on n elements. Then all permutations of [n] are P-transverse.

Example

Let P be the poset on [4] with 1 < 2 and 3 < 4 and no other relations. Then the P-transverse permutations are

(), (13), (14), (23), (24), (13)(24).

Given a poset P on [n], Zaslavsky's theorem implies that

#LinExt(P) = #(P - transverse permutations).

Give a combinatorial bijection ψ between these two sets such that

$$\sum_{\sigma \in \text{LinExt}(P)} t^{n-\text{cycles}(\psi(\sigma))} = \sum_{k \ge 0} c_k(P) t^k = \text{Poin}(P, t).$$

Given a poset P on [n], Zaslavsky's theorem implies that

#LinExt(P) = #(P - transverse permutations).

Give a combinatorial bijection ψ between these two sets such that

$$\sum_{\sigma \in \mathsf{LinExt}(P)} t^{n-\mathsf{cycles}(\psi(\sigma))} = \sum_{k \ge 0} c_k(P) t^k = \mathsf{Poin}(P, t).$$

We have such a map! Let's give an example of how it works.

Example

Take $\sigma = 1325476 \in \text{LinExt}(P)$ where

Example

Take $\sigma = 1325476 \in \text{LinExt}(P)$ where

To compute $\psi(\sigma)$, we cut σ (greedily) into strings which are antichains of P.

Example

Take $\sigma = 1325476 \in \text{LinExt}(P)$ where

To compute $\psi(\sigma)$, we cut σ (greedily) into strings which are antichains of P. Here

 $\sigma = 1325476.$

Example

Take $\sigma = 1325476 \in \text{LinExt}(P)$ where

To compute $\psi(\sigma)$, we cut σ (greedily) into strings which are antichains of P. Here

 $\sigma = 1325476.$

Say that x in Level k is *essential* if it covers an element of Level k - 1. We denote the essential elements with an overline.

Example

Take $\sigma = 1325476 \in \text{LinExt}(P)$ where

To compute $\psi(\sigma)$, we cut σ (greedily) into strings which are antichains of P. Here

$\sigma = \overline{1325476}$

Say that x in Level k is *essential* if it covers an element of Level k - 1. We denote the essential elements with an overline.

We have $\sigma = \overline{1325476}$.

Within each level (color block), put a left parenthesis left of each left-to-right maxmimum among the essential elements:

 $\sigma = (\overline{1}(\overline{3}(\overline{2}5(\overline{4}(\overline{76}$

We have $\sigma = \overline{1325476}$.

Within each level (color block), put a left parenthesis left of each left-to-right maxmimum among the essential elements:

 $\sigma = (\overline{1}(\overline{3}(\overline{2}5(\overline{4}(\overline{76}$

Adding in the right parenthesis: $\sigma = (\overline{1})(\overline{3})(\overline{2}5)(\overline{4})(\overline{76})$

We have $\sigma = \overline{1325476}$.

Within each level (color block), put a left parenthesis left of each left-to-right maxmimum among the essential elements:

 $\sigma = (\overline{1}(\overline{3}(\overline{2}5(\overline{4}(\overline{76}$

Adding in the right parenthesis: $\sigma = (\overline{1})(\overline{3})(\overline{2}5)(\overline{4})(\overline{76})$ Removing the decoration gives

 $\psi(\sigma) = (1)(3)(25)(4)(76)$

Theorem

Given a poset P on [n], not only does ψ give a bijection, but $\sum_{\sigma \in \text{LinExt}(P)} t^{n-\text{cycles}(\psi(\sigma))} = \sum_{k \ge 0} c_k(P) t^k = \text{Poin}(P, t).$

Thanks!

References

- Richard Stanley. An Introduction to Hyperplane Arrangements. Geometric Combinatorics IAS/Park City Mathematics Series, pages 389–496, 2007.
- [2] Thomas Zaslavsky. A Combinatorial Analysis of Topological Dissections. Advances in Mathematics, 25(3):267–285, 1977.