Hopf Monoids of Ordered Simplicial Complexes

Federico Castillo

Max Planck Institute for Natural Sciences.

federico.castillo@mis.mpg.de

September 12, 2020

This is joint work with Jeremy Martin, from University of Kansas, and José Samper, from Pontificia Universidad Católica de Chile.

Figure: Jeremy Martin

Figure: José Samper

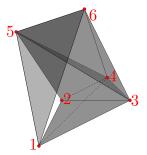
A simplicial complex Γ on a set I is a nonempty subset of 2^{I} closed under inclusion. Elements of Γ are called faces. It is enough to specify the largest (under inclusion) faces. Its **rank** is the size of the largest subset in Γ . The **dimension** is rank minus one. It is **pure** if all maximal (under inclusion) sets have the same size. A simplicial complex Γ on a set I is a nonempty subset of 2^{I} closed under inclusion. Elements of Γ are called faces. It is enough to specify the largest (under inclusion) faces. Its **rank** is the size of the largest subset in Γ . The **dimension** is rank minus one. It is **pure** if all maximal (under inclusion) sets have the same size.

• The restriction of Γ to $J \subset I$ consist on the subsets in Γ completely contained in J.

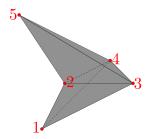
A simplicial complex Γ on a set I is a nonempty subset of 2^{I} closed under inclusion. Elements of Γ are called faces. It is enough to specify the largest (under inclusion) faces. Its **rank** is the size of the largest subset in Γ . The **dimension** is rank minus one. It is **pure** if all maximal (under inclusion) sets have the same size.

- The restriction of Γ to $J \subset I$ consist on the subsets in Γ completely contained in J.
- The link of a face γ ∈ Γ consist of {τ ∈ Γ : γ ∪ τ ∈ Γ, γ ∩ τ = ∅}. The link is a simplicial complex with grounded in the complement of γ.

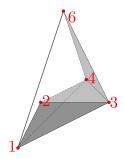
Let $\Gamma = \langle 123, 124, 134, 235, 245, 345, 156, 346, 356, 456 \rangle$.



Restriction to $\{1, 2, 3, 4, 5\}, \Gamma|_{12345} = \langle 123, 124, 134, 235, 245, 345 \rangle$.



Restriction to $\{1, 2, 3, 4, 6\}, \Gamma|_{12346} = \langle 123, 124, 134, 16, 346 \rangle.$



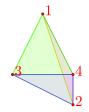
Simplicial Complexes: Example

Link of the vertices 6 and 1.

Join of simplicial complexes

If Γ_1, Γ_2 are simplicial complexes on vertex sets I_1, I_2 then the join $\Gamma_1 * \Gamma_2$ is the complex on $I_1 \sqcup I_2$ defined by

$$\Gamma_1 * \Gamma_2 = \{ \gamma_1 \cup \gamma_2 : \gamma_1 \in \Gamma_1, \gamma_2 \in \Gamma_2 \}.$$



An ordered complex is a pair (w, Γ) where w is any linear order on the ground set of Γ .

э

An ordered complex is a pair (w, Γ) where w is any linear order on the ground set of Γ . We say that a **pure** ordered complex is **prefix-pure** if all its initial restrictions (hence all its initial contractions) are pure.

Main Definition

A class H of prefix-pure ordered complexes is called a **Hopf class** if it satisfies the following three conditions.

- Closure under ordered join
- **2** Closure under initial restriction

Closure under initial contraction: If (w, Γ) ∈ H, A is an initial segment of w and γ is the lex minimal facet of Γ|_A, then (w', link_γ(Γ)) ∈ H. Here w' is restricted to the complement of A.

One definition of matroid

A simplicial complex is the independence complex of a matroid if and only if the restriction to any subset is pure.

Let **OMAT** be the class of all independence complexes of matroids, together with **any** linear order on the ground set. Then **OMAT** is a Hopf class.

Definition

An ordered simplicial complex (w, Γ) is **shifted** if for any face $\gamma \in \Gamma$ and any vertex $e \in \gamma$ then $\gamma \cup f \setminus e$ is a face for every $f <_w e$.

Example

Example The complex $\Gamma = \langle 123, 124, \mathbf{125}, 134, \mathbf{234} \rangle$ is shifted, generated by the two highlighted facets.

Pure shifted complexes do not form a Hopf class because they are not closed under ordered join. On the other hand, the class of ordered joins of shifted complexes is a Hopf class **SHIFT**.

Let (w, Γ, I) be a pure ordered complex. The **Gale order** on facets of Γ is defined as follows. Let $F = \{f_1 <_w \cdots <_w f_r\}$ and $G = \{g_1 <_w \cdots <_w g_r\}$ be two facets. Then $F \leq_g G$ if $f_i \leq_w g_i$ for every *i*.

Definition

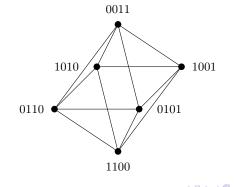
Let \mathcal{J} be an order ideal of this poset; then the **Gale truncation** of (w, Γ) at \mathcal{J} is $(w, \Gamma_{\mathcal{J}})$, where $\Gamma_{\mathcal{J}}$ is the (pure) subcomplex of Γ generated by the facets in \mathcal{J} .

Gale truncation generalizes the notion of shiftedness: a shifted complex is just a Gale truncation of an ordered **uniform matroid**. Gale truncations of matroids *generate* a Hopf Class.

Theorem (Gelfand-Goresky-MacPherson-Serganova)

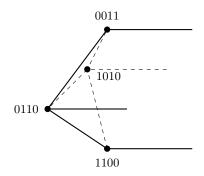
A pure complex is the independent complex of a matroid if and only if its **indicator polytope** has all edges parallel to roots of type A.

For example consider the matroid with bases $\{12, 13, 14, 23, 24, 25, 34\}$.



Definition

An unbounded matroid is the **indicator complex** of a 0/1 polyhedron whose edges are parallel to roots of type A.



Unbounded matroids form a hopf class **OMAT**₊.

Federico Castillo

Intuition

Families of **labeled** combinatorial structures with rules for **merging** and **breaking**.

- A Hopf Monoid $(\mathbf{H}, \mu, \Delta)$ consists of
 - For each finite set I a vector space $\mathbf{H}[I]$.
 - A product $\mu_{S,T}$: $\mathbf{H}[S] \otimes \mathbf{H}[S] \mapsto \mathbf{H}[S \sqcup T]$.
 - A coproduct $\Delta_{S,T} : \mathbf{H}[S \sqcup T] \mapsto \mathbf{H}[S] \otimes \mathbf{H}[S].$

Satisfying compatibility axioms.

Hopf Monoid on ordered simplicial complexes

Given a Hopf class we define **product** and **coproducts** on basis elements by join and restriction/contraction respectively:

$$\mu_{I,J}((w_1,\Gamma_1)\otimes(w_2,\Gamma_2)) = \sum_{w\in\mathsf{Shuffle}(w_1,w_2)} (w_1,\Gamma_1) *_w (w_2,\Gamma_2),$$
$$\Delta_{I,J}(w,\Gamma) = \begin{cases} (w|I,\Gamma|I)\otimes(w/I,\Gamma/I) & \text{if } I \text{ is an initial segment of } w, \\ 0 & \text{otherwise.} \end{cases}$$

Theorem

For every Hopf class \mathbf{H} , the tuple $(\mathbf{H}, \mu, u, \Delta, \epsilon)$ is a connected Hopf monoid.

Federico Castillo

Takeuchi Formula

The **antipode** of a Hopf monoid is given by

$$\mathsf{s}_{I}(h) = \sum_{\substack{I=A_{1} \sqcup \cdots \sqcup A_{k} \\ k \ge 1}} (-1)^{k} \mu_{A_{1}, \cdots, A_{k}} \circ \Delta_{A_{1}, \cdots, A_{k}}(h)$$

In some sense, this plays the role of the **inverse** map in a Hopf monoid.

Theorem

A multiplicity-free, cancellation-free, formula for the antipode in the cases of **ordered matroids** and **shifted complexes**.

We conjecture that antipode for any Hopf class is multiplicity-free.

The main idea comes from Ardila-Aguiar: consider the matroid polytope and interpret that massive cancellation as an Euler characteristic.

Devil is in the details

When working with **generalized permutohedra** one is lead to **braid combinatorics**: every cone is a union of braid cones, which in turn can be describe with a poset.

Devil is in the details

When working with **generalized permutohedra** one is lead to **braid combinatorics**: every cone is a union of braid cones, which in turn can be describe with a poset. For example,

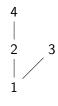
Devil is in the details

When working with **generalized permutohedra** one is lead to **braid combinatorics**: every cone is a union of braid cones, which in turn can be describe with a poset.

For example, the poset below defines a cone

 $\{\mathbf{x} \in \mathbb{R}^4 : x_1 \leq x_2, x_1 \leq x_3, x_2 \leq x_4\}$ and it is the union of three braid cones

$$\sigma_{1234} = \{ \mathbf{x} \in \mathbb{R}^4 : x_1 \le x_2 \le x_3 \le x_4 \}, \\ \sigma_{1243} = \{ \mathbf{x} \in \mathbb{R}^4 : x_1 \le x_2 \le x_4 \le x_3 \}, \\ \sigma_{1324} = \{ \mathbf{x} \in \mathbb{R}^4 : x_1 \le x_3 \le x_2 \le x_4 \}.$$

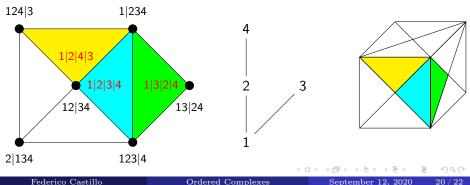


Poset cones

For every poset on we can associate a cone \mathcal{C}_P , which is a union of braid cones.

Where problems arise

The thorny issue is how to compute $\partial \mathcal{C}_P \cap \partial \mathcal{C}_Q$ for arbitrary posets P and Q.



Federico Castillo

We define a class of simplicial complexes over ordered sets.
 We put a Hopf Monoid structure.

In the process of doing this we found interesting subproblems.

We define a class of simplicial complexes over ordered sets.
We put a Hopf Monoid structure.
In the process of doing this we found interesting subproblems.

Maybe the real treasure was the friends we made along the way.

Thank You!

3